phd-scripts/Unpublished/XFEM/AbaqusUEL/usfdld.for

220 lines
7.4 KiB
Text
Raw Permalink Normal View History

2024-05-13 19:50:21 +00:00
c J. Grogan, 2012
c -------------------------------------------------------------------
SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,
1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,
2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,
3 LACCFLA)
C
INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*80 CMNAME,ORNAME
CHARACTER*3 FLGRAY(15)
DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),
1 T(3,3),TIME(2)
DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),
1 COORD(*)
c -------------------------------------------------------------------
field(1)=0.
print *, coord(1),time(1),dtime,T,'****'
return
end subroutine
SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,
1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,
2 DTIME,KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,
3 PREDEF,NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,
4 JPROPS,NJPROP,PERIOD)
C
INCLUDE 'ABA_PARAM.INC'
PARAMETER ( ZERO = 0.D0, HALF = 0.5D0, ONE = 1.D0 )
C
DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),
1 SVARS(NSVARS),ENERGY(8),PROPS(*),COORDS(MCRD,NNODE),
2 U(NDOFEL),DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),
3 PARAMS(3),JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),
4 DDLMAG(MDLOAD,*),PREDEF(2,NPREDF,NNODE),LFLAGS(*),
5 JPROPS(*)
DIMENSION SRESID(6)
C
C UEL SUBROUTINE FOR A HORIZONTAL TRUSS ELEMENT
C
C SRESID - stores the static residual at time t+dt
C SVARS - In 1-6, contains the static residual at time t
C upon entering the routine. SRESID is copied to
C SVARS(1-6) after the dynamic residual has been
C calculated.
C - For half-increment residual calculations: In 7-12,
C contains the static residual at the beginning
C of the previous increment. SVARS(1-6) are copied
C into SVARS(7-12) after the dynamic residual has
C been calculated.
C
AREA = PROPS(1)
E = PROPS(2)
ANU = PROPS(3)
RHO = PROPS(4)
C
ALEN = ABS(COORDS(1,2)-COORDS(1,1))
AK = AREA*E/ALEN
AM = HALF*AREA*RHO*ALEN
C
DO K1 = 1, NDOFEL
SRESID(K1) = ZERO
DO KRHS = 1, NRHS
RHS(K1,KRHS) = ZERO
END DO
DO K2 = 1, NDOFEL
AMATRX(K2,K1) = ZERO
END DO
END DO
C
IF (LFLAGS(3).EQ.1) THEN
C Normal incrementation
IF (LFLAGS(1).EQ.1 .OR. LFLAGS(1).EQ.2) THEN
C *STATIC
AMATRX(1,1) = AK
AMATRX(4,4) = AK
AMATRX(1,4) = -AK
AMATRX(4,1) = -AK
IF (LFLAGS(4).NE.0) THEN
FORCE = AK*(U(4)-U(1))
DFORCE = AK*(DU(4,1)-DU(1,1))
SRESID(1) = -DFORCE
SRESID(4) = DFORCE
RHS(1,1) = RHS(1,1)-SRESID(1)
RHS(4,1) = RHS(4,1)-SRESID(4)
ENERGY(2) = HALF*FORCE*(DU(4,1)-DU(1,1))
* + HALF*DFORCE*(U(4)-U(1))
* + HALF*DFORCE*(DU(4,1)-DU(1,1))
ELSE
FORCE = AK*(U(4)-U(1))
SRESID(1) = -FORCE
SRESID(4) = FORCE
RHS(1,1) = RHS(1,1)-SRESID(1)
RHS(4,1) = RHS(4,1)-SRESID(4)
DO KDLOAD = 1, NDLOAD
IF (JDLTYP(KDLOAD,1).EQ.1001) THEN
RHS(4,1) = RHS(4,1)+ADLMAG(KDLOAD,1)
ENERGY(8) = ENERGY(8)+(ADLMAG(KDLOAD,1)
* - HALF*DDLMAG(KDLOAD,1))*DU(4,1)
IF (NRHS.EQ.2) THEN
C Riks
RHS(4,2) = RHS(4,2)+DDLMAG(KDLOAD,1)
END IF
END IF
END DO
ENERGY(2) = HALF*FORCE*(U(4)-U(1))
END IF
ELSE IF (LFLAGS(1).EQ.11 .OR. LFLAGS(1).EQ.12) THEN
C *DYNAMIC
ALPHA = PARAMS(1)
BETA = PARAMS(2)
GAMMA = PARAMS(3)
C
DADU = ONE/(BETA*DTIME**2)
DVDU = GAMMA/(BETA*DTIME)
C
DO K1 = 1, NDOFEL
AMATRX(K1,K1) = AM*DADU
RHS(K1,1) = RHS(K1,1)-AM*A(K1)
END DO
AMATRX(1,1) = AMATRX(1,1)+(ONE+ALPHA)*AK
AMATRX(4,4) = AMATRX(4,4)+(ONE+ALPHA)*AK
AMATRX(1,4) = AMATRX(1,4)-(ONE+ALPHA)*AK
AMATRX(4,1) = AMATRX(4,1)-(ONE+ALPHA)*AK
FORCE = AK*(U(4)-U(1))
SRESID(1) = -FORCE
SRESID(4) = FORCE
RHS(1,1) = RHS(1,1) -
* ((ONE+ALPHA)*SRESID(1)-ALPHA*SVARS(1))
RHS(4,1) = RHS(4,1) -
* ((ONE+ALPHA)*SRESID(4)-ALPHA*SVARS(4))
ENERGY(1) = ZERO
DO K1 = 1, NDOFEL
SVARS(K1+6) = SVARS(k1)
SVARS(K1) = SRESID(K1)
ENERGY(1) = ENERGY(1)+HALF*V(K1)*AM*V(K1)
END DO
ENERGY(2) = HALF*FORCE*(U(4)-U(1))
END IF
ELSE IF (LFLAGS(3).EQ.2) THEN
C Stiffness matrix
AMATRX(1,1) = AK
AMATRX(4,4) = AK
AMATRX(1,4) = -AK
AMATRX(4,1) = -AK
ELSE IF (LFLAGS(3).EQ.4) THEN
C Mass matrix
DO K1 = 1, NDOFEL
AMATRX(K1,K1) = AM
END DO
ELSE IF (LFLAGS(3).EQ.5) THEN
C Half-increment residual calculation
ALPHA = PARAMS(1)
FORCE = AK*(U(4)-U(1))
SRESID(1) = -FORCE
SRESID(4) = FORCE
RHS(1,1) = RHS(1,1)-AM*A(1)-(ONE+ALPHA)*SRESID(1)
* + HALF*ALPHA*( SVARS(1)+SVARS(7) )
RHS(4,1) = RHS(4,1)-AM*A(4)-(ONE+ALPHA)*SRESID(4)
* + HALF*ALPHA*( SVARS(4)+SVARS(10) )
ELSE IF (LFLAGS(3).EQ.6) THEN
C Initial acceleration calculation
DO K1 = 1, NDOFEL
AMATRX(K1,K1) = AM
END DO
FORCE = AK*(U(4)-U(1))
SRESID(1) = -FORCE
SRESID(4) = FORCE
RHS(1,1) = RHS(1,1)-SRESID(1)
RHS(4,1) = RHS(4,1)-SRESID(4)
ENERGY(1) = ZERO
DO K1 = 1, NDOFEL
SVARS(K1) = SRESID(K1)
ENERGY(1) = ENERGY(1)+HALF*V(K1)*AM*V(K1)
END DO
ENERGY(2) = HALF*FORCE*(U(4)-U(1))
ELSE IF (LFLAGS(3).EQ.100) THEN
C Output for perturbations
IF (LFLAGS(1).EQ.1 .OR. LFLAGS(1).EQ.2) THEN
C *STATIC
FORCE = AK*(U(4)-U(1))
DFORCE = AK*(DU(4,1)-DU(1,1))
SRESID(1) = -DFORCE
SRESID(4) = DFORCE
RHS(1,1) = RHS(1,1)-SRESID(1)
RHS(4,1) = RHS(4,1)-SRESID(4)
ENERGY(2) = HALF*FORCE*(DU(4,1)-DU(1,1))
* + HALF*DFORCE*(U(4)-U(1))
* + HALF*DFORCE*(DU(4,1)-DU(1,1))
DO KVAR = 1, NSVARS
SVARS(KVAR) = ZERO
END DO
SVARS(1) = RHS(1,1)
SVARS(4) = RHS(4,1)
ELSE IF (LFLAGS(1).EQ.41) THEN
C *FREQUENCY
DO KRHS = 1, NRHS
DFORCE = AK*(DU(4,KRHS)-DU(1,KRHS))
SRESID(1) = -DFORCE
SRESID(4) = DFORCE
RHS(1,KRHS) = RHS(1,KRHS)-SRESID(1)
RHS(4,KRHS) = RHS(4,KRHS)-SRESID(4)
END DO
DO KVAR = 1, NSVARS
SVARS(KVAR) = ZERO
END DO
SVARS(1) = RHS(1,1)
SVARS(4) = RHS(4,1)
END IF
END IF
C
RETURN
END