294 lines
8.3 KiB
Text
294 lines
8.3 KiB
Text
|
** One-element Test:
|
||
|
** (via *UMAT procedure)
|
||
|
**
|
||
|
** Model is intended to represent a single crystal metallic bar
|
||
|
** subjected to uniaxial tension
|
||
|
**
|
||
|
** This program is based on the "finite strain" version of the
|
||
|
** constitutive law of a single crystal metal following the Schmid
|
||
|
** rule, with various hardening options. It involves a single
|
||
|
** element.
|
||
|
**
|
||
|
***************************************************************************
|
||
|
**
|
||
|
** The UMAT associated with this file has been modified to correct
|
||
|
** an error in the way in which the Bassani & Wu hardening law
|
||
|
** was implemented. For more information, see comment number five
|
||
|
** in the UMAT.
|
||
|
**
|
||
|
** The changes require only one modification to the input file.
|
||
|
** The number of "state dependent variables" (i.e. the DEPVAR command)
|
||
|
** must be increased to account for the additional state variables.
|
||
|
** The comment lines near the DEPVAR command in this input file have
|
||
|
** been modified to reflect the changes made in the UMAT.
|
||
|
**
|
||
|
** An addendum to the manuscript which describes this UMAT (Huang, Y.,
|
||
|
** A User-Material Subroutine Incorporating Single Crystal Plasticity
|
||
|
** in the ABAQUS Finite Element Program, Mech Report 178, Harvard
|
||
|
** University, 1991.) can be obtained from the same source.
|
||
|
**
|
||
|
** Jeffrey W. Kysar
|
||
|
** November, 1997
|
||
|
** kysar@esag.harvard.edu
|
||
|
**
|
||
|
**************************************************************************
|
||
|
**
|
||
|
*HEADING
|
||
|
Single-Crystal One Element Model; Finite Strain and Finite Rotation
|
||
|
**
|
||
|
** lengths in mm, stress and moduli in MPa
|
||
|
**
|
||
|
*NODE, NSET=NODEALL
|
||
|
1, 0., 0., 0.
|
||
|
2, 0., 10., 0.
|
||
|
3, 0., 10., 10.
|
||
|
4, 0., 0., 10.
|
||
|
5, 100., 0., 0.
|
||
|
6, 100., 10., 0.
|
||
|
7, 100., 10., 10.
|
||
|
8, 100., 0., 10.
|
||
|
9, 0., 5., 0.
|
||
|
10, 0., 10., 5.
|
||
|
11, 0., 5., 10.
|
||
|
12, 0., 0., 5.
|
||
|
13, 100., 5., 0.
|
||
|
14, 100., 10., 5.
|
||
|
15, 100., 5., 10.
|
||
|
16, 100., 0., 5.
|
||
|
17, 50., 0., 0.
|
||
|
18, 50., 10., 0.
|
||
|
19, 50., 10., 10.
|
||
|
20, 50., 0., 10.
|
||
|
**
|
||
|
*ELEMENT, TYPE=C3D20R
|
||
|
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||
|
16, 17, 18, 19, 20
|
||
|
*ELSET,ELSET=ONE
|
||
|
1
|
||
|
**
|
||
|
*BOUNDARY
|
||
|
1,PINNED
|
||
|
2,1
|
||
|
2,3
|
||
|
3,1
|
||
|
4,1
|
||
|
9,1
|
||
|
10,1
|
||
|
11,1
|
||
|
12,1
|
||
|
**
|
||
|
**
|
||
|
*SOLID SECTION, ELSET=ONE, MATERIAL=CRYSTAL
|
||
|
*MATERIAL,NAME=CRYSTAL
|
||
|
**
|
||
|
*USER MATERIAL,CONSTANTS=160,UNSYMM
|
||
|
**
|
||
|
** All the constants below must be real numbers!
|
||
|
**
|
||
|
168400., 121400., 75400. ,
|
||
|
** c11 , c12 , c44 , (elastic constants of copper crystal)
|
||
|
** MPa , MPa , MPa ,
|
||
|
**
|
||
|
0. ,
|
||
|
** constants only used for an elastic orthotropic or anisotropic material
|
||
|
** MPa ,
|
||
|
**
|
||
|
0. ,
|
||
|
** constants only used for an elastic anisotropic material
|
||
|
** MPa ,
|
||
|
**
|
||
|
** The elastic constants above are relative to crystal axes, where
|
||
|
** 1 -- [100], 2 -- [010], 3 -- [001] . These elastic constants
|
||
|
** are arranged in the following order:
|
||
|
** eight constants each line (data card)
|
||
|
**
|
||
|
** (1) isotropic:
|
||
|
** E , Nu (Young's modulus and Poisson's ratio)
|
||
|
** 0.
|
||
|
** 0.
|
||
|
**
|
||
|
** (2) cubic:
|
||
|
** c11 , c12 , c44
|
||
|
** 0.
|
||
|
** 0.
|
||
|
**
|
||
|
** (3) orthotropic:
|
||
|
** D1111, D1122, D2222, D1133, D2233, D3333, D1212, D1313,
|
||
|
** D2233
|
||
|
** 0.
|
||
|
**
|
||
|
** (4) anisotropic:
|
||
|
** D1111, D1122, D2222, D1133, D2233, D3333, D1112, D2212,
|
||
|
** D3312, D1212, D1113, D2213, D3313, D1213, D1313, D1123,
|
||
|
** D2223, D3323, D1223, D1323, D2323
|
||
|
**
|
||
|
**
|
||
|
1. ,
|
||
|
** number of sets of slip systems
|
||
|
** -- ,
|
||
|
**
|
||
|
1. , 1. , 1. , 1. , 1. , 0. ,
|
||
|
** normal to slip plane , slip direction , of the 1st set
|
||
|
** -- , -- , -- , -- , -- , -- ,
|
||
|
**
|
||
|
0. ,
|
||
|
** normal to slip plane , slip direction , of the 2nd set
|
||
|
** -- , -- , -- , -- , -- , -- ,
|
||
|
**
|
||
|
0. ,
|
||
|
** normal to slip plane , slip direction , of the 3rd set
|
||
|
** -- ,
|
||
|
**
|
||
|
**
|
||
|
-1. , 0. , 1. , 0. , 0. , 1. ,
|
||
|
** direction in local system , global system , of the 1st vector
|
||
|
** --- , -- , -- , -- , -- , -- ,
|
||
|
** (the first vector to determine crystal orientation in global system)
|
||
|
**
|
||
|
0. , 1. , 0. , 0. , 1. , 0. ,
|
||
|
** direction in local system , global system , of the 2nd vector
|
||
|
** -- , -- , -- , -- , -- , -- ,
|
||
|
** (the second vector to determine crystal orientation in global system)
|
||
|
**
|
||
|
** constraint: The angle between two non-parallel vectors in the local
|
||
|
** and global systems should be the same. The relative
|
||
|
** difference must be less than 0.1%.
|
||
|
**
|
||
|
**
|
||
|
10. , .001 ,
|
||
|
** n , adot , of 1st set of slip systems
|
||
|
** --- , 1/sec ,
|
||
|
** (power hardening exponent and hardening coefficient)
|
||
|
** gammadot = adot * ( tau / g ) ** n
|
||
|
**
|
||
|
** Users who want to use their own constitutive relation may change the
|
||
|
** function subprograms F and DFDX called by the subroutine
|
||
|
** STRAINRATE and provide the necessary data (no more than 8) in the
|
||
|
** above line (data card).
|
||
|
**
|
||
|
**
|
||
|
0. , 0.
|
||
|
** n , adot , of 2nd set of slip systems
|
||
|
** --- , 1/sec ,
|
||
|
**
|
||
|
0. , 0. ,
|
||
|
** n , adot , of 3rd set of slip systems
|
||
|
** -- , 1/sec ,
|
||
|
**
|
||
|
**
|
||
|
541.5 , 109.5 , 60.8 ,
|
||
|
** h0 , taus , tau0 , of 1st set of slip systems
|
||
|
** MPa , MPa , MPa ,
|
||
|
** (initial hardening modulus, saturation stress and initial critical
|
||
|
** resolved shear stress)
|
||
|
** H = H0 * { sech [ H0 * gamma / (taus - tau0 ) ] } ** 2
|
||
|
**
|
||
|
** Users who want to use their own self-hardening law may change the
|
||
|
** function subprogram HSELF called by the subroutine LATENTHARDEN
|
||
|
** and provide the necessary data (no more than 8) in the above line
|
||
|
** (data card).
|
||
|
**
|
||
|
**
|
||
|
1. , 1. ,
|
||
|
** q , q1 , Latent hardening of 1st set of slip systems
|
||
|
** -- , -- ,
|
||
|
** (ratios of latent to self-hardening in the same and different sets
|
||
|
** of slip systems)
|
||
|
**
|
||
|
** Users who want to use their own latent-hardening may change the
|
||
|
** function subprogram HLATNT called by the subroutine LATENTHARDEN
|
||
|
** and provide the additional data (beyond the self-hardening data,
|
||
|
** no more than 8) in the above line (data card).
|
||
|
**
|
||
|
**
|
||
|
0. ,
|
||
|
** h0 , taus , tau0 , of 2nd set of slip systems
|
||
|
** MPa , MPa , Mpa ,
|
||
|
**
|
||
|
0. ,
|
||
|
** q , q1 , of 2nd set of slip systems
|
||
|
** -- , -- ,
|
||
|
**
|
||
|
0. ,
|
||
|
** h0 , taus , tau0 , of 3rd set of slip systems
|
||
|
** MPa , MPa , MPa ,
|
||
|
**
|
||
|
0. ,
|
||
|
** q , q1 , of 3rd set of slip systems
|
||
|
** -- , -- ,
|
||
|
**
|
||
|
**
|
||
|
.5 , 1. ,
|
||
|
** THETA , NLGEOM ,
|
||
|
** -- , -- ,
|
||
|
**
|
||
|
** THETA: implicit integration parameter, between 0 and 1
|
||
|
**
|
||
|
** NLGEOM: parameter determining whether finite deformation of single
|
||
|
** crystal is considered
|
||
|
**
|
||
|
** NLGEOM=0. --- small deformation
|
||
|
** otherwise --- finite rotation and finite strain, Users must
|
||
|
** declare "NLGEOM" in the input file, at the *STEP
|
||
|
** card
|
||
|
**
|
||
|
**
|
||
|
1. , 10. , 1.E-5 ,
|
||
|
** ITRATN , ITRMAX , GAMERR ,
|
||
|
** -- , -- , -- ,
|
||
|
** ITRATN: parameter determining whether iteration method is used to
|
||
|
** solve increments of stresses and state variables in terms of
|
||
|
** strain increments
|
||
|
**
|
||
|
** ITRATN=0. --- no iteration
|
||
|
** otherwise --- iteration
|
||
|
**
|
||
|
** ITRMAX: maximum number of iterations
|
||
|
**
|
||
|
** GAMERR: absolute error of shear strains in slip systems
|
||
|
**
|
||
|
**
|
||
|
*DEPVAR
|
||
|
125
|
||
|
** number of state dependent variables, must be larger than (or equal
|
||
|
** to) ten times total number of slip systems in all sets, plus
|
||
|
** five, plus the additional number of state variables users
|
||
|
** introduced for their own single crystal model
|
||
|
**
|
||
|
** For example, {110}<111> has twelve slip systems. There are
|
||
|
** 12*10+5=113 state dependent variables.
|
||
|
**
|
||
|
**
|
||
|
**
|
||
|
**
|
||
|
**
|
||
|
**
|
||
|
******************** Load step follows *****************************
|
||
|
**
|
||
|
*RESTART,WRITE,FREQUENCY=10
|
||
|
**
|
||
|
*STEP,INC=500,NLGEOM
|
||
|
*STATIC
|
||
|
0.0005,1.0,0.0000001,0.2
|
||
|
*DLOAD
|
||
|
ONE,P2,-2.0E2
|
||
|
**
|
||
|
*NODE PRINT,FREQUENCY=50
|
||
|
U,RF
|
||
|
*EL PRINT,FREQUENCY=50
|
||
|
S
|
||
|
*EL PRINT,FREQUENCY=50
|
||
|
E
|
||
|
*EL PRINT,FREQUENCY=50
|
||
|
SDV13,SDV14,SDV15,SDV16,SDV17,SDV18,SDV19,SDV20
|
||
|
SDV21,SDV22,SDV23,SDV24,SDV109
|
||
|
**
|
||
|
*NODE FILE,FREQUENCY=1
|
||
|
U
|
||
|
*EL FILE,FREQUENCY=1
|
||
|
S,E
|
||
|
*EL FILE,FREQUENCY=1
|
||
|
SDV
|
||
|
**
|
||
|
*END STEP
|