Add scripts and inp files.
This commit is contained in:
parent
ad937f2602
commit
e19f869a1e
390 changed files with 6580687 additions and 10 deletions
316
Biomaterials13/Scripts/ALE20.f
Normal file
316
Biomaterials13/Scripts/ALE20.f
Normal file
|
@ -0,0 +1,316 @@
|
|||
c These subroutines control the velocity of exterior nodes in the
|
||||
c ALE adaptive mesh domain for 3D uniform corrosion analysis.
|
||||
c Author: J. Grogan - BMEC, NUI Galway. Created: 19/09/2012
|
||||
c ------------------------------------------------------------------
|
||||
c SUB UEXTERNALDB: This is used only at the begining of an analysis.
|
||||
c It populates the 'facet' and 'nbr' common block arrays.
|
||||
subroutine uexternaldb(lop,lrestart,time,dtime,kstep,kinc)
|
||||
include 'aba_param.inc'
|
||||
c Common Block Declarations
|
||||
parameter (maxNodes=700000,maxFacets=700000)
|
||||
integer nbr(maxNodes,5),facet(maxFacets,12)
|
||||
real crd(maxNodes,3)
|
||||
common nbr,facet,crd
|
||||
c Other Declarations
|
||||
integer n(8)
|
||||
character*256 outdir
|
||||
c
|
||||
if(lop==0.or.lop==4)then
|
||||
call getoutdir(outdir,lenoutdir)
|
||||
nbr=0
|
||||
open(unit=101,file=outdir(1:lenoutdir)//'/NodeData.inc',
|
||||
1 status='old')
|
||||
read(101,*)numfaces
|
||||
do i=1,4*numfaces,4
|
||||
read(101,*)nfix,n(1),n(2),n(3),n(4),n(5),n(6),n(7),n(8)
|
||||
c facet(*,12)=fized face flag, facet(*,4-11)=element nodes
|
||||
do j=1,4
|
||||
ind=i+j-1
|
||||
facet(ind,12)=nfix
|
||||
do k=1,8
|
||||
facet(ind,3+k)=n(k)
|
||||
enddo
|
||||
enddo
|
||||
do j=1,4
|
||||
ind=i+j-1
|
||||
c facet(*,1-3)=nodes in facet
|
||||
read(101,*)facet(ind,1),facet(ind,2),facet(ind,3)
|
||||
node=facet(ind,1)
|
||||
c nbr(node,1)=counter for facets per node
|
||||
if(nbr(node,1)==0)nbr(node,1)=1
|
||||
nbr(node,1)=nbr(node,1)+1
|
||||
c nbr(node,>1)=facet number
|
||||
nbr(node,nbr(node,1))=ind
|
||||
enddo
|
||||
enddo
|
||||
close(unit=101)
|
||||
endif
|
||||
return
|
||||
end
|
||||
c ------------------------------------------------------------------
|
||||
c SUB UFIELD: This is used at the start of each analysis increment.
|
||||
c It populates the 'crd' common block array.
|
||||
subroutine ufield(field,kfield,nsecpt,kstep,kinc,time,node,
|
||||
1 coords,temp,dtemp,nfield)
|
||||
include 'aba_param.inc'
|
||||
dimension coords(3)
|
||||
c Common Block Declarations
|
||||
parameter (maxNodes=700000,maxFacets=700000)
|
||||
integer nbr(maxNodes,5),facet(maxFacets,12)
|
||||
real crd(maxNodes,3)
|
||||
common nbr,facet,crd
|
||||
c
|
||||
crd(node,1)=coords(1)
|
||||
crd(node,2)=coords(2)
|
||||
crd(node,3)=coords(3)
|
||||
return
|
||||
end
|
||||
c ------------------------------------------------------------------
|
||||
c SUB UMESHMOTION: This is used at the start of each mesh sweep.
|
||||
c It calculates the velocity of each node in the local coord system.
|
||||
subroutine umeshmotion(uref,ulocal,node,nndof,lnodetype,alocal,
|
||||
$ ndim,time,dtime,pnewdt,kstep,kinc,kmeshsweep,jmatyp,jgvblock,
|
||||
$ lsmooth)
|
||||
include 'aba_param.inc'
|
||||
c user defined dimension statements
|
||||
dimension ulocal(*),uglobal(ndim),tlocal(ndim)
|
||||
dimension alocal(ndim,*),time(2)
|
||||
c Common Block Declarations
|
||||
parameter (maxNodes=700000,maxFacets=700000)
|
||||
integer nbr(maxNodes,5),facet(maxFacets,12)
|
||||
real crd(maxNodes,3)
|
||||
common nbr,facet,crd
|
||||
c Other Declarations
|
||||
integer np(3)
|
||||
real fp(6,9),fc(6,3),fe(6,3),fn(6,3),a(3),b(3),c(3),d(3),q(3)
|
||||
real qnew(3),cp1(3),cp2(3),cp3(3)
|
||||
if(lnodetype>=3.and.lnodetype<=5)then
|
||||
C PRINT *,NODE,'IN'
|
||||
c Analysis Parameters
|
||||
velocity=0.02d0
|
||||
tol=1.d-5
|
||||
c
|
||||
numFacets=nbr(node,1)-1
|
||||
c get facet point coords (fp).
|
||||
do i=1,numFacets
|
||||
nFacet=nbr(node,i+1)
|
||||
do j=1,3
|
||||
nNode=facet(nFacet,j)
|
||||
if (j==1)nnode=node
|
||||
do k=1,3
|
||||
fp(i,3*(j-1)+k)=crd(nNode,k)
|
||||
enddo
|
||||
c print *,node,nNode
|
||||
c print *,crd(nNode,1),crd(nNode,2),crd(nNode,3)
|
||||
enddo
|
||||
enddo
|
||||
c get facet element centroid(fe)
|
||||
fe=0.
|
||||
do i=1,numFacets
|
||||
nFacet=nbr(node,i+1)
|
||||
do j=1,8
|
||||
nNode=facet(nFacet,j+3)
|
||||
do k=1,3
|
||||
fe(i,k)=fe(i,k)+crd(nNode,k)/8.
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
c get facet centroids (fc)
|
||||
do i=1,numFacets
|
||||
do j=1,3
|
||||
fc(i,j)=(fp(i,j)+fp(i,j+3)+fp(i,j+6))/3.
|
||||
enddo
|
||||
enddo
|
||||
c get facet normals (fn)
|
||||
do i=1,numFacets
|
||||
do j=1,3
|
||||
a(j)=fp(i,j+3)-fp(i,j)
|
||||
b(j)=fp(i,j+6)-fp(i,j)
|
||||
enddo
|
||||
call crossprod(a,b,c)
|
||||
rlen=sqrt(c(1)*c(1)+c(2)*c(2)+c(3)*c(3))
|
||||
c get inward pointing unit normal
|
||||
dp=0.
|
||||
do j=1,3
|
||||
dp=dp+c(j)*(fe(i,j)-fc(i,j))
|
||||
enddo
|
||||
rsign=1
|
||||
if(dp<0.)rsign=-1
|
||||
do j=1,3
|
||||
fn(i,j)=rsign*c(j)/rlen
|
||||
enddo
|
||||
enddo
|
||||
c move non-fixed facets along unit normals - update fp
|
||||
dist=velocity*dtime
|
||||
do i=1,numFacets
|
||||
nFacet=nbr(node,i+1)
|
||||
if(facet(nFacet,12)/=1)then
|
||||
do j=1,3
|
||||
fp(i,j)=fp(i,j)+fn(i,j)*dist
|
||||
fp(i,j+3)=fp(i,j+3)+fn(i,j)*dist
|
||||
fp(i,j+6)=fp(i,j+6)+fn(i,j)*dist
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
c get old node position (q)
|
||||
do i=1,3
|
||||
q(i)=crd(node,i)
|
||||
enddo
|
||||
c determine method to get qnew and relevant planes
|
||||
c method depends on # of unique normal directions
|
||||
numpairs=0
|
||||
if(numfacets==1)then
|
||||
method=1
|
||||
else
|
||||
numdir=0
|
||||
do i=1,numfacets-1
|
||||
do j=i+1,numfacets
|
||||
dp=0.
|
||||
do k=1,3
|
||||
dp=dp+fn(i,k)*fn(j,k)
|
||||
enddo
|
||||
if(abs(dp)<1.-tol.or.abs(dp)>1.+tol)then
|
||||
np(1)=i
|
||||
np(2)=j
|
||||
numdir=2
|
||||
endif
|
||||
if (numdir==2)continue
|
||||
enddo
|
||||
if(numdir==2)continue
|
||||
enddo
|
||||
if(numdir==2)then
|
||||
method=3
|
||||
do i=1,numfacets
|
||||
if(i/=np(1).and.i/=np(2))then
|
||||
dp1=0.
|
||||
dp2=0.
|
||||
do j=1,3
|
||||
dp1=dp1+fn(np(1),j)*fn(i,j)
|
||||
dp2=dp2+fn(np(2),j)*fn(i,j)
|
||||
enddo
|
||||
if(abs(dp1)<1.-tol.or.abs(dp1)>1.+tol)then
|
||||
if(abs(dp2)<1.-tol.or.
|
||||
$ abs(dp2)>1.+tol)then
|
||||
np(3)=i
|
||||
numdir=3
|
||||
method=2
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
else
|
||||
method=1
|
||||
endif
|
||||
endif
|
||||
c Get new node position
|
||||
if(method==1)then
|
||||
c get projection of old point q onto any plane
|
||||
c qnew = q - ((q - p1).n)*n
|
||||
dp=0.
|
||||
do i=1,3
|
||||
dp=dp+(q(i)-fp(1,i))*fn(1,i)
|
||||
enddo
|
||||
do i=1,3
|
||||
qnew(i)=q(i)-dp*fn(1,i)
|
||||
enddo
|
||||
elseif(method==2)then
|
||||
c get distances d from each plane to origin
|
||||
do i=1,3
|
||||
d(i)=0.
|
||||
do j=1,3
|
||||
d(i)=d(i)-fn(np(i),j)*fp(np(i),j)
|
||||
enddo
|
||||
enddo
|
||||
c get n1 x n2
|
||||
do i=1,3
|
||||
a(i)=fn(np(1),i)
|
||||
b(i)=fn(np(2),i)
|
||||
enddo
|
||||
call crossprod(a,b,cp1)
|
||||
c get n2 x n3
|
||||
do i=1,3
|
||||
a(i)=fn(np(2),i)
|
||||
b(i)=fn(np(3),i)
|
||||
enddo
|
||||
call crossprod(a,b,cp2)
|
||||
c get n3 x n1
|
||||
do i=1,3
|
||||
a(i)=fn(np(3),i)
|
||||
b(i)=fn(np(1),i)
|
||||
enddo
|
||||
call crossprod(a,b,cp3)
|
||||
c get intersection of 3 planes
|
||||
c qnew = (-d1(n2 x n3)-d2(n3 x n1)-d3(n1 x n2))/(n1.(n2 x n3))
|
||||
denom=fn(np(1),1)*cp2(1)+fn(np(1),2)*cp2(2)
|
||||
$ +fn(np(1),3)*cp2(3)
|
||||
do i=1,3
|
||||
qnew(i)=-(d(1)*cp2(i)+d(2)*cp3(i)+d(3)*cp1(i))
|
||||
$ /denom
|
||||
enddo
|
||||
else
|
||||
c find line of intersection of planes given by a point
|
||||
c and vector
|
||||
do i=1,2
|
||||
d(i)=0.
|
||||
do j=1,3
|
||||
d(i)=d(i)-fn(np(i),j)*fp(np(i),j)
|
||||
enddo
|
||||
enddo
|
||||
c get n1 x n2
|
||||
do i=1,3
|
||||
a(i)=fn(np(1),i)
|
||||
b(i)=fn(np(2),i)
|
||||
enddo
|
||||
call crossprod(a,b,cp1)
|
||||
rlen=sqrt(cp1(1)*cp1(1)+cp1(2)*cp1(2)+cp1(3)*cp1(3))
|
||||
do i=1,3
|
||||
a(i)=d(2)*fn(np(1),i)-d(1)*fn(np(2),i)
|
||||
enddo
|
||||
c get (d2n1 - d1n2) x (n1 x n2)
|
||||
call crossprod(a,cp1,cp2)
|
||||
c a = unit vector along line
|
||||
c b = point on line
|
||||
do i=1,3
|
||||
a(i)=cp1(i)/rlen
|
||||
b(i)=cp2(i)/(rlen*rlen)
|
||||
enddo
|
||||
c get projection of node onto line
|
||||
c bq'=((bq).a)*a
|
||||
dp=0.
|
||||
do i=1,3
|
||||
dp=dp+(q(i)-b(i))*a(i)
|
||||
enddo
|
||||
do i=1,3
|
||||
qnew(i)=b(i)+dp*a(i)
|
||||
enddo
|
||||
endif
|
||||
do i=1,3
|
||||
a(i)=(qnew(i)-q(i))/dtime
|
||||
enddo
|
||||
c print *,node,a(1),a(2),a(3)
|
||||
do i=1,3
|
||||
uglobal(i) = a(i)
|
||||
enddo
|
||||
do i=1,ndim
|
||||
tlocal(i)=0.
|
||||
do j=1,ndim
|
||||
tlocal(i)=tlocal(i)+uglobal(j)*alocal(j,i)
|
||||
enddo
|
||||
enddo
|
||||
do i=1,ndim
|
||||
ulocal(i)=tlocal(i)
|
||||
enddo
|
||||
endif
|
||||
lsmooth=1
|
||||
return
|
||||
end
|
||||
c Return cross product(c) for input vectors (a, b)
|
||||
subroutine crossprod(a,b,c)
|
||||
include 'aba_param.inc'
|
||||
real a(3),b(3),c(3)
|
||||
c(1)=a(2)*b(3)-a(3)*b(2)
|
||||
c(2)=a(3)*b(1)-a(1)*b(3)
|
||||
c(3)=a(1)*b(2)-a(2)*b(1)
|
||||
return
|
||||
end
|
||||
|
31
Biomaterials13/Scripts/CDAM_PRE.py
Normal file
31
Biomaterials13/Scripts/CDAM_PRE.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# Python Preprocessor Script for Abaqus Corrosion Model
|
||||
# J. Grogan, D. Gastaldi - Created. 19-07-11
|
||||
# Import abaqus modules
|
||||
from abaqusConstants import *
|
||||
from abaqus import *
|
||||
import random
|
||||
# Create Model, Assembly and Instance objects
|
||||
modelNames=mdb.models.keys()
|
||||
corModel=mdb.models[modelNames[0]]
|
||||
corAssembly=corModel.rootAssembly
|
||||
corInst=corAssembly.instances['Corrode']
|
||||
# Create list to store labels of surface elements
|
||||
numElems=len(corInst.elements)
|
||||
elemList=[0]*numElems*2
|
||||
randList=[0]*numElems*2
|
||||
corSurf=corAssembly.surfaces['CorSurf']
|
||||
random.seed()
|
||||
for eachElem in corSurf.elements:
|
||||
elemList[eachElem.label]=1
|
||||
randList[eachElem.label]=random.weibullvariate(1.,0.14)
|
||||
# For each element write surface flag and random number to INC file
|
||||
incFile=open(modelNames[0]+'.inc','w')
|
||||
incFile.write("*Initial Conditions,type=solution \n")
|
||||
j=0
|
||||
for eachElem in corInst.elements:
|
||||
label=eachElem.label
|
||||
incFile.write ("Assembly.Corrode.%i,%i,%f,%i,%i\n"%(label,
|
||||
elemList[label],randList[label],0,0))
|
||||
j=j+1
|
||||
print (float(j)/float(len(corInst.elements)))*100.
|
||||
incFile.close()
|
181
Biomaterials13/Scripts/Cor.f
Normal file
181
Biomaterials13/Scripts/Cor.f
Normal file
|
@ -0,0 +1,181 @@
|
|||
c J. Grogan, 2012
|
||||
c -------------------------------------------------------------------
|
||||
subroutine vusdfld(
|
||||
* nblock,nstatev,nfieldv,nprops,ndir,nshr,jElem,kIntPt,
|
||||
* kLayer,kSecPt,stepTime,totalTime,dt,cmname,coordMp,
|
||||
* direct,T,charLength,props,stateOld,stateNew,field)
|
||||
c
|
||||
include 'vaba_param.inc'
|
||||
c
|
||||
dimension jElem(nblock),stateNew(nblock,nstatev),
|
||||
* field(nblock,nfieldv),stateOld(nblock,nstatev),
|
||||
* charLength(nblock),rPEEQ(maxblk,1),
|
||||
* Stress(nblock*6),jData(nblock*6),
|
||||
* eigVal(nblock,3),coordMp(nblock,3)
|
||||
c -------------------------------------------------------------------
|
||||
c Common blocks store element status and random number assigment.
|
||||
common active(600000)
|
||||
common rnum(600000)
|
||||
integer active
|
||||
integer rnum
|
||||
c
|
||||
do k=1,nblock
|
||||
c -------------------------------------------------------------------
|
||||
c Update SDVs
|
||||
do i=1,7
|
||||
stateNew(k,i)=stateOld(k,i)
|
||||
enddo
|
||||
stateNew(k,11)=stateOld(k,11)
|
||||
c -------------------------------------------------------------------
|
||||
c Determine Characteristic Element Length
|
||||
damage=stateOld(k,8)
|
||||
randE=stateOld(k,9)
|
||||
activeE=stateOld(k,10)
|
||||
c -------------------------------------------------------------------
|
||||
c Check if element is on exposed surface.
|
||||
do i=2,7
|
||||
nNum=stateNew(k,i)
|
||||
if(nNum==0.)cycle
|
||||
if(active(nNum)==1)then
|
||||
activeE=1.
|
||||
if(rnum(nNum)*0.9547>randE)randE=rnum(nNum)*0.9547
|
||||
endif
|
||||
enddo
|
||||
c -------------------------------------------------------------------
|
||||
c Recover Corrosion Parameters
|
||||
ukinetic=0.05d0
|
||||
randE=1.d0
|
||||
if(activeE>0.99d0)then
|
||||
if(totaltime>1.5d0)then
|
||||
dam_inc=(ukinetic/charlength(k))*randE*dt
|
||||
damage=damage+dam_inc
|
||||
endif
|
||||
endif
|
||||
c -------------------------------------------------------------------
|
||||
c Remove Fully Damaged Elements
|
||||
if(damage>=0.999)then
|
||||
damage=1.d0
|
||||
stateNew(k,11)=0.d0
|
||||
active(statenew(k,1))=1.d0
|
||||
rnum(statenew(k,1))=randE
|
||||
endif
|
||||
c -------------------------------------------------------------------
|
||||
stateNew(k,8)=damage
|
||||
field(k,1)=damage
|
||||
stateNew(k,9)=randE
|
||||
stateNew(k,10)=activeE
|
||||
c -------------------------------------------------------------------
|
||||
end do
|
||||
return
|
||||
end subroutine vusdfld
|
||||
subroutine vuanisohyper_inv(nblock,nFiber,nInv,jElem,kIntPt,
|
||||
* kLayer,kSecPt,cmname,nstatev, nfieldv, nprops,props,tempOld,
|
||||
* tempNew,fieldOld,fieldNew,stateOld,sInvariant,zeta,uDev,duDi,
|
||||
* d2uDiDi,stateNew)
|
||||
c
|
||||
include 'vaba_param.inc'
|
||||
c
|
||||
dimension props(nprops),tempOld(nblock),
|
||||
* fieldOld(nblock,nfieldv),stateOld(nblock,nstatev),
|
||||
* tempNew(nblock), fieldNew(nblock,nfieldv),
|
||||
* stateNew(nblock,nstatev),sInvariant(nblock,nInv),
|
||||
* zeta(nblock,nFiber*(nFiber-1)/2),uDev(nblock),
|
||||
* duDi(nblock,nInv),d2uDiDi(nblock,nInv*(nInv+1)/2)
|
||||
c
|
||||
parameter(zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0)
|
||||
common active(600000)
|
||||
common rnum(600000)
|
||||
integer active
|
||||
integer rnum
|
||||
c Material Properties
|
||||
u = props(1)
|
||||
rkap = props(2)
|
||||
rk1 = props(3)
|
||||
rk2 = props(4)
|
||||
rp = props(5)
|
||||
c
|
||||
c Loop Over Each Element
|
||||
do k = 1,nblock
|
||||
c Index Each Invariant according to Abaqus Convention
|
||||
i1 = 1
|
||||
i1i1 = 1
|
||||
i3 = 3
|
||||
i3i3 = 6
|
||||
i4 = 4
|
||||
i1i4 = 7
|
||||
i4i4 = 10
|
||||
i6 = 8
|
||||
i1i6 = 29
|
||||
i6i6 = 36
|
||||
c Get Values of each Invariant
|
||||
ri1 = sinvariant(k,i1)
|
||||
ri4 = sinvariant(k,i4)
|
||||
ri6 = sinvariant(k,i6)
|
||||
c Get Fibre Contributions to UDEV
|
||||
t = (one - rp) * (ri1 - three) * (ri1 - three)
|
||||
if(ri4>1.)then
|
||||
t1 = rk2 * (t + rp * (ri4 - one) * (ri4 - one))
|
||||
else
|
||||
t1=0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
t2 = rk2 * (t + rp * (ri6 - one) * (ri6 - one))
|
||||
else
|
||||
t2=0.
|
||||
endif
|
||||
et1 = exp(t1)
|
||||
et2 = exp(t2)
|
||||
term1 = rk1 / (two * rk2)
|
||||
ufibres = term1 * (et1 + et2 - two)
|
||||
c Get UDEV
|
||||
udev(k) = u * (ri1 - three) + ufibres
|
||||
c Get dUdI1
|
||||
dt1di1 = rk2 * two * (one - rp) * (ri1 - three)
|
||||
dudi(k,i1) = term1 * dt1di1 * (et1 + et2) + u
|
||||
c Get dUdI4 and dUdI6
|
||||
if(ri4>1.)then
|
||||
dt1di4 = rk2 * two * rp * (ri4 - one)
|
||||
else
|
||||
dt1di4 = 0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
dt2di6 = rk2 * two * rp * (ri6 - one)
|
||||
else
|
||||
dt2di6 = 0.
|
||||
endif
|
||||
dudi(k,i4) = term1 * dt1di4 * et1
|
||||
dudi(k,i6) = term1 * dt2di6 * et2
|
||||
c Get d2UdI1dI1
|
||||
d2t1di1di1 = rk2 * two * (one - rp)
|
||||
d2udidi(k,i1i1) = term1 * (d2t1di1di1 + dt1di1 * dt1di1)
|
||||
d2udidi(k,i1i1) = d2udidi(k,i1i1) * (et1 + et2)
|
||||
c Get d2UdI1dI4 and d2UdI4dI4
|
||||
d2udidi(k,i1i4) = term1 * dt1di4 * dt1di1 * et1
|
||||
d2t1di4di4 = rk2 * two * rp
|
||||
d2udidi(k,i4i4) = term1 * (dt1di4 * dt1di4 + d2t1di4di4)
|
||||
d2udidi(k,i4i4) = d2udidi(k,i4i4) * et1
|
||||
c Get d2UdI1dI6 and d2UdI6dI6
|
||||
d2udidi(k,i1i6) = term1 * dt2di6 * dt1di1 * et2
|
||||
d2t2di6di6 = rk2 * two * rp
|
||||
d2udidi(k,i6i6) = term1 * (dt2di6 * dt2di6 + d2t2di6di6)
|
||||
d2udidi(k,i6i6) = d2udidi(k,i6i6) * et2
|
||||
end do
|
||||
c For the compressible case
|
||||
if(rkap > zero) then
|
||||
do k = 1,nblock
|
||||
rj = sInvariant(k,i3)
|
||||
dudi(k,i3) = rkap * (rj-one)
|
||||
c duDi(k,i3) = (rkap/two) * (rj - one/rj)
|
||||
d2udidi(k,i3i3) = rkap
|
||||
c d2uDiDi(k,i3i3)= (rkap/two) * (one + one/ rj / rj)
|
||||
end do
|
||||
end if
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
201
Biomaterials13/Scripts/CorP.f
Normal file
201
Biomaterials13/Scripts/CorP.f
Normal file
|
@ -0,0 +1,201 @@
|
|||
c J. Grogan, 2012
|
||||
c -------------------------------------------------------------------
|
||||
subroutine vusdfld(
|
||||
* nblock,nstatev,nfieldv,nprops,ndir,nshr,jElem,kIntPt,
|
||||
* kLayer,kSecPt,stepTime,totalTime,dt,cmname,coordMp,
|
||||
* direct,T,charLength,props,stateOld,stateNew,field)
|
||||
c
|
||||
include 'vaba_param.inc'
|
||||
c
|
||||
dimension jElem(nblock),stateNew(nblock,nstatev),
|
||||
* field(nblock,nfieldv),stateOld(nblock,nstatev),
|
||||
* charLength(nblock),rPEEQ(maxblk,1),
|
||||
* Stress(nblock*6),jData(nblock*6),
|
||||
* eigVal(nblock,3),coordMp(nblock,3)
|
||||
c -------------------------------------------------------------------
|
||||
c Common blocks store element status and random number assigment.
|
||||
common active(600000)
|
||||
common rnum(600000)
|
||||
common ibcheck
|
||||
integer active
|
||||
integer rnum
|
||||
integer ibcheck
|
||||
character*256 outdir
|
||||
c
|
||||
if (ibcheck/=5)then
|
||||
call vgetoutdir(outdir,lenoutdir)
|
||||
open(unit=105,file=outdir(1:lenoutdir)//'/NBOPTP.inc',
|
||||
* status='old')
|
||||
do while (ioe==0)
|
||||
read(105,*,iostat=ioe)ielnum,frnum
|
||||
if(ioe==0)rnum(ielnum)=frnum
|
||||
enddo
|
||||
close(unit=105)
|
||||
ibcheck=5
|
||||
endif
|
||||
do k=1,nblock
|
||||
c -------------------------------------------------------------------
|
||||
c Update SDVs
|
||||
do i=1,7
|
||||
stateNew(k,i)=stateOld(k,i)
|
||||
enddo
|
||||
stateNew(k,11)=stateOld(k,11)
|
||||
c -------------------------------------------------------------------
|
||||
c Determine Characteristic Element Length
|
||||
damage=stateOld(k,8)
|
||||
if(steptime<2.*dt)then
|
||||
randE=rnum(statenew(k,1))
|
||||
else
|
||||
randE=stateOld(k,9)
|
||||
endif
|
||||
activeE=stateOld(k,10)
|
||||
c -------------------------------------------------------------------
|
||||
c Check if element is on exposed surface.
|
||||
do i=2,7
|
||||
nNum=stateNew(k,i)
|
||||
if(nNum==0.)cycle
|
||||
if(active(nNum)==1)then
|
||||
activeE=1.
|
||||
if(rnum(nNum)*0.94>randE)randE=rnum(nNum)*0.94
|
||||
endif
|
||||
enddo
|
||||
c -------------------------------------------------------------------
|
||||
c Recover Corrosion Parameters
|
||||
ukinetic=0.000025d0
|
||||
c randE=1.d0
|
||||
if(activeE>0.99d0)then
|
||||
if(totaltime>1.5d0)then
|
||||
dam_inc=(ukinetic/charlength(k))*randE*dt
|
||||
damage=damage+dam_inc
|
||||
endif
|
||||
endif
|
||||
c -------------------------------------------------------------------
|
||||
c Remove Fully Damaged Elements
|
||||
if(damage>=0.999)then
|
||||
damage=1.d0
|
||||
stateNew(k,11)=0.d0
|
||||
active(statenew(k,1))=1.d0
|
||||
rnum(statenew(k,1))=randE
|
||||
endif
|
||||
c -------------------------------------------------------------------
|
||||
stateNew(k,8)=damage
|
||||
field(k,1)=damage
|
||||
stateNew(k,9)=randE
|
||||
stateNew(k,10)=activeE
|
||||
c -------------------------------------------------------------------
|
||||
end do
|
||||
return
|
||||
end subroutine vusdfld
|
||||
subroutine vuanisohyper_inv(nblock,nFiber,nInv,jElem,kIntPt,
|
||||
* kLayer,kSecPt,cmname,nstatev, nfieldv, nprops,props,tempOld,
|
||||
* tempNew,fieldOld,fieldNew,stateOld,sInvariant,zeta,uDev,duDi,
|
||||
* d2uDiDi,stateNew)
|
||||
c
|
||||
include 'vaba_param.inc'
|
||||
c
|
||||
dimension props(nprops),tempOld(nblock),
|
||||
* fieldOld(nblock,nfieldv),stateOld(nblock,nstatev),
|
||||
* tempNew(nblock), fieldNew(nblock,nfieldv),
|
||||
* stateNew(nblock,nstatev),sInvariant(nblock,nInv),
|
||||
* zeta(nblock,nFiber*(nFiber-1)/2),uDev(nblock),
|
||||
* duDi(nblock,nInv),d2uDiDi(nblock,nInv*(nInv+1)/2)
|
||||
c
|
||||
parameter(zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0)
|
||||
common active(600000)
|
||||
common rnum(600000)
|
||||
common ibcheck
|
||||
integer active
|
||||
integer rnum
|
||||
integer ibcheck
|
||||
c Material Properties
|
||||
u = props(1)
|
||||
rkap = props(2)
|
||||
rk1 = props(3)
|
||||
rk2 = props(4)
|
||||
rp = props(5)
|
||||
c
|
||||
c Loop Over Each Element
|
||||
do k = 1,nblock
|
||||
c Index Each Invariant according to Abaqus Convention
|
||||
i1 = 1
|
||||
i1i1 = 1
|
||||
i3 = 3
|
||||
i3i3 = 6
|
||||
i4 = 4
|
||||
i1i4 = 7
|
||||
i4i4 = 10
|
||||
i6 = 8
|
||||
i1i6 = 29
|
||||
i6i6 = 36
|
||||
c Get Values of each Invariant
|
||||
ri1 = sinvariant(k,i1)
|
||||
ri4 = sinvariant(k,i4)
|
||||
ri6 = sinvariant(k,i6)
|
||||
c Get Fibre Contributions to UDEV
|
||||
t = (one - rp) * (ri1 - three) * (ri1 - three)
|
||||
if(ri4>1.)then
|
||||
t1 = rk2 * (t + rp * (ri4 - one) * (ri4 - one))
|
||||
else
|
||||
t1=0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
t2 = rk2 * (t + rp * (ri6 - one) * (ri6 - one))
|
||||
else
|
||||
t2=0.
|
||||
endif
|
||||
et1 = exp(t1)
|
||||
et2 = exp(t2)
|
||||
term1 = rk1 / (two * rk2)
|
||||
ufibres = term1 * (et1 + et2 - two)
|
||||
c Get UDEV
|
||||
udev(k) = u * (ri1 - three) + ufibres
|
||||
c Get dUdI1
|
||||
dt1di1 = rk2 * two * (one - rp) * (ri1 - three)
|
||||
dudi(k,i1) = term1 * dt1di1 * (et1 + et2) + u
|
||||
c Get dUdI4 and dUdI6
|
||||
if(ri4>1.)then
|
||||
dt1di4 = rk2 * two * rp * (ri4 - one)
|
||||
else
|
||||
dt1di4 = 0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
dt2di6 = rk2 * two * rp * (ri6 - one)
|
||||
else
|
||||
dt2di6 = 0.
|
||||
endif
|
||||
dudi(k,i4) = term1 * dt1di4 * et1
|
||||
dudi(k,i6) = term1 * dt2di6 * et2
|
||||
c Get d2UdI1dI1
|
||||
d2t1di1di1 = rk2 * two * (one - rp)
|
||||
d2udidi(k,i1i1) = term1 * (d2t1di1di1 + dt1di1 * dt1di1)
|
||||
d2udidi(k,i1i1) = d2udidi(k,i1i1) * (et1 + et2)
|
||||
c Get d2UdI1dI4 and d2UdI4dI4
|
||||
d2udidi(k,i1i4) = term1 * dt1di4 * dt1di1 * et1
|
||||
d2t1di4di4 = rk2 * two * rp
|
||||
d2udidi(k,i4i4) = term1 * (dt1di4 * dt1di4 + d2t1di4di4)
|
||||
d2udidi(k,i4i4) = d2udidi(k,i4i4) * et1
|
||||
c Get d2UdI1dI6 and d2UdI6dI6
|
||||
d2udidi(k,i1i6) = term1 * dt2di6 * dt1di1 * et2
|
||||
d2t2di6di6 = rk2 * two * rp
|
||||
d2udidi(k,i6i6) = term1 * (dt2di6 * dt2di6 + d2t2di6di6)
|
||||
d2udidi(k,i6i6) = d2udidi(k,i6i6) * et2
|
||||
end do
|
||||
c For the compressible case
|
||||
if(rkap > zero) then
|
||||
do k = 1,nblock
|
||||
rj = sInvariant(k,i3)
|
||||
dudi(k,i3) = rkap * (rj-one)
|
||||
c duDi(k,i3) = (rkap/two) * (rj - one/rj)
|
||||
d2udidi(k,i3i3) = rkap
|
||||
c d2uDiDi(k,i3i3)= (rkap/two) * (one + one/ rj / rj)
|
||||
end do
|
||||
end if
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
100
Biomaterials13/Scripts/holz.for
Normal file
100
Biomaterials13/Scripts/holz.for
Normal file
|
@ -0,0 +1,100 @@
|
|||
subroutine vuanisohyper_inv(nblock,nFiber,nInv,jElem,kIntPt,
|
||||
* kLayer,kSecPt,cmname,nstatev, nfieldv, nprops,props,tempOld,
|
||||
* tempNew,fieldOld,fieldNew,stateOld,sInvariant,zeta,uDev,duDi,
|
||||
* d2uDiDi,stateNew)
|
||||
c
|
||||
include 'vaba_param.inc'
|
||||
c
|
||||
dimension props(nprops),tempOld(nblock),
|
||||
* fieldOld(nblock,nfieldv),stateOld(nblock,nstatev),
|
||||
* tempNew(nblock), fieldNew(nblock,nfieldv),
|
||||
* stateNew(nblock,nstatev),sInvariant(nblock,nInv),
|
||||
* zeta(nblock,nFiber*(nFiber-1)/2),uDev(nblock),
|
||||
* duDi(nblock,nInv),d2uDiDi(nblock,nInv*(nInv+1)/2)
|
||||
c
|
||||
parameter(zero = 0.d0, one = 1.d0, two = 2.d0, three = 3.d0)
|
||||
c Material Properties
|
||||
u = props(1)
|
||||
rkap = props(2)
|
||||
rk1 = props(3)
|
||||
rk2 = props(4)
|
||||
rp = props(5)
|
||||
c
|
||||
c Loop Over Each Element
|
||||
do k = 1,nblock
|
||||
c Index Each Invariant according to Abaqus Convention
|
||||
i1 = 1
|
||||
i1i1 = 1
|
||||
i3 = 3
|
||||
i3i3 = 6
|
||||
i4 = 4
|
||||
i1i4 = 7
|
||||
i4i4 = 10
|
||||
i6 = 8
|
||||
i1i6 = 29
|
||||
i6i6 = 36
|
||||
c Get Values of each Invariant
|
||||
ri1 = sinvariant(k,i1)
|
||||
ri4 = sinvariant(k,i4)
|
||||
ri6 = sinvariant(k,i6)
|
||||
c Get Fibre Contributions to UDEV
|
||||
t = (one - rp) * (ri1 - three) * (ri1 - three)
|
||||
if(ri4>1.)then
|
||||
t1 = rk2 * (t + rp * (ri4 - one) * (ri4 - one))
|
||||
else
|
||||
t1=0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
t2 = rk2 * (t + rp * (ri6 - one) * (ri6 - one))
|
||||
else
|
||||
t2=0.
|
||||
endif
|
||||
et1 = exp(t1)
|
||||
et2 = exp(t2)
|
||||
term1 = rk1 / (two * rk2)
|
||||
ufibres = term1 * (et1 + et2 - two)
|
||||
c Get UDEV
|
||||
udev(k) = u * (ri1 - three) + ufibres
|
||||
c Get dUdI1
|
||||
dt1di1 = rk2 * two * (one - rp) * (ri1 - three)
|
||||
dudi(k,i1) = term1 * dt1di1 * (et1 + et2) + u
|
||||
c Get dUdI4 and dUdI6
|
||||
if(ri4>1.)then
|
||||
dt1di4 = rk2 * two * rp * (ri4 - one)
|
||||
else
|
||||
dt1di4 = 0.
|
||||
endif
|
||||
if(ri6>1.)then
|
||||
dt2di6 = rk2 * two * rp * (ri6 - one)
|
||||
else
|
||||
dt2di6 = 0.
|
||||
endif
|
||||
dudi(k,i4) = term1 * dt1di4 * et1
|
||||
dudi(k,i6) = term1 * dt2di6 * et2
|
||||
c Get d2UdI1dI1
|
||||
d2t1di1di1 = rk2 * two * (one - rp)
|
||||
d2udidi(k,i1i1) = term1 * (d2t1di1di1 + dt1di1 * dt1di1)
|
||||
d2udidi(k,i1i1) = d2udidi(k,i1i1) * (et1 + et2)
|
||||
c Get d2UdI1dI4 and d2UdI4dI4
|
||||
d2udidi(k,i1i4) = term1 * dt1di4 * dt1di1 * et1
|
||||
d2t1di4di4 = rk2 * two * rp
|
||||
d2udidi(k,i4i4) = term1 * (dt1di4 * dt1di4 + d2t1di4di4)
|
||||
d2udidi(k,i4i4) = d2udidi(k,i4i4) * et1
|
||||
c Get d2UdI1dI6 and d2UdI6dI6
|
||||
d2udidi(k,i1i6) = term1 * dt2di6 * dt1di1 * et2
|
||||
d2t2di6di6 = rk2 * two * rp
|
||||
d2udidi(k,i6i6) = term1 * (dt2di6 * dt2di6 + d2t2di6di6)
|
||||
d2udidi(k,i6i6) = d2udidi(k,i6i6) * et2
|
||||
end do
|
||||
c For the compressible case
|
||||
if(rkap > zero) then
|
||||
do k = 1,nblock
|
||||
rj = sInvariant(k,i3)
|
||||
dudi(k,i3) = rkap * (rj-one)
|
||||
c duDi(k,i3) = (rkap/two) * (rj - one/rj)
|
||||
d2udidi(k,i3i3) = rkap
|
||||
c d2uDiDi(k,i3i3)= (rkap/two) * (one + one/ rj / rj)
|
||||
end do
|
||||
end if
|
||||
return
|
||||
end
|
48
Biomaterials13/Scripts/map_plaque.py
Normal file
48
Biomaterials13/Scripts/map_plaque.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
# Import Neccesary Abaqus Modules
|
||||
from abaqusConstants import *
|
||||
from abaqus import *
|
||||
# Define Part
|
||||
aModel=mdb.models['Straight']
|
||||
aAss=aModel.rootAssembly
|
||||
bPart=aModel.parts['p3']
|
||||
tb=0.24
|
||||
A=2.4
|
||||
ecen=0.
|
||||
ellip=0.
|
||||
bean_m=0.
|
||||
bean_exp=1.5
|
||||
t1=5.
|
||||
t2=5.
|
||||
xp1=0.5
|
||||
xp2=0.5
|
||||
rL1=11.
|
||||
rL2=10.1787602
|
||||
radius=rL2/(2.*pi)
|
||||
r2=15.
|
||||
# Map Part
|
||||
nodelist=[]
|
||||
coordlist=[]
|
||||
for eachnode in bPart.nodes:
|
||||
x_cor=eachnode.coordinates[0]
|
||||
y_cor=eachnode.coordinates[1]
|
||||
z_cor=eachnode.coordinates[2]
|
||||
rFraction=z_cor/tb
|
||||
rindex1=(y_cor/rL1)**(-log(2.)/log(xp1))
|
||||
rbracket1=(sin(pi*rindex1))**t1
|
||||
rad_plaque=1.+A*rbracket1
|
||||
rheight1=tb+(A-tb)*rbracket1
|
||||
theta=x_cor/radius
|
||||
x_cor=(radius-rad_plaque*z_cor)*cos(theta)
|
||||
y_cor=y_cor
|
||||
z_cor=(radius-rad_plaque*z_cor)*sin(theta)-ecen*rbracket1*rFraction
|
||||
if x_cor>0.:
|
||||
x_cor=x_cor+ellip*abs(x_cor)*rFraction*rbracket1
|
||||
else:
|
||||
x_cor=x_cor-ellip*abs(x_cor)*rFraction*rbracket1
|
||||
z_cor=z_cor+bean_m*(abs(x_cor)**bean_exp)*rFraction*rbracket1
|
||||
# theta=y_cor/r2
|
||||
# y_cor=(r2-z_cor)*cos(theta)
|
||||
# z_cor=(r2-z_cor)*sin(theta)
|
||||
nodelist.append(eachnode)
|
||||
coordlist.append((x_cor,y_cor,z_cor))
|
||||
bPart.editNode(nodes=nodelist,coordinates=coordlist)
|
45
Biomaterials13/Scripts/nodeCon3DF.py
Normal file
45
Biomaterials13/Scripts/nodeCon3DF.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# This is a pre-processor script for 3D ALE corrosion analysis.
|
||||
# Author: J. Grogan - BMEC, NUI Galway. Created: 19/09/2012
|
||||
from abaqusConstants import *
|
||||
from abaqus import *
|
||||
#
|
||||
aModel=mdb.models['Dream6']
|
||||
aPart=aModel.parts['AMesh']
|
||||
incFile=open('NodeData.inc','w')
|
||||
#
|
||||
numFaces=0
|
||||
pstring=''
|
||||
# Cycle through all element faces
|
||||
for eachFace in aPart.elementFaces:
|
||||
# Check if Face is on external Surface
|
||||
if len(eachFace.getElements())==1:
|
||||
numFaces=numFaces+1
|
||||
faceNodes=eachFace.getNodes()
|
||||
# Identify 'Fixed' Faces
|
||||
fixed=1
|
||||
try:
|
||||
fSet=aPart.sets['Fixed']
|
||||
for eachNode in faceNodes:
|
||||
if eachNode not in fSet.nodes:
|
||||
fixed=0
|
||||
break
|
||||
except:
|
||||
fixed=0
|
||||
pstring=pstring+str(fixed)+' '
|
||||
# Write Element Nodes
|
||||
eNodes=[]
|
||||
for eachNode in eachFace.getElements()[0].getNodes():
|
||||
pstring=pstring+str(eachNode.label)+' '
|
||||
pstring=pstring+'\n'
|
||||
# Write Each Face Nodes and Corresponding Connected Nodes
|
||||
for eachNode in faceNodes:
|
||||
pstring=pstring+str(eachNode.label)+' '
|
||||
for eachEdge in eachNode.getElemEdges():
|
||||
for eachENode in eachEdge.getNodes():
|
||||
if eachENode.label != eachNode.label and eachENode in faceNodes:
|
||||
pstring=pstring+str(eachENode.label)+' '
|
||||
pstring=pstring+'\n'
|
||||
#
|
||||
incFile.write(str(numFaces)+'\n')
|
||||
incFile.write(pstring)
|
||||
incFile.close()
|
33
Biomaterials13/Scripts/pdiam.py
Normal file
33
Biomaterials13/Scripts/pdiam.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
from abaqusConstants import *
|
||||
from odbAccess import *
|
||||
odbfilename='tpit3.odb'
|
||||
resFile='Diams20.dat'
|
||||
outFile = open(resFile,"w")
|
||||
odb=openOdb(path=odbfilename)
|
||||
# create sets
|
||||
addNodes=[]
|
||||
tol1=0.005
|
||||
tol2=0.005
|
||||
minval=-5.0
|
||||
# Find Inner Nodes
|
||||
for eachNode in odb.rootAssembly.instances['PLAQUE-1'].nodes:
|
||||
x=eachNode.coordinates[0]
|
||||
y=eachNode.coordinates[1]
|
||||
dist=sqrt(x*x+y*y)
|
||||
if dist<0.82:
|
||||
addNodes.append(eachNode.label)
|
||||
odb.rootAssembly.NodeSetFromNodeLabels(name='Min13', nodeLabels=(('PLAQUE-1',addNodes),))
|
||||
aSet=odb.rootAssembly.nodeSets['Min13']
|
||||
print aSet
|
||||
# Find Min Radius
|
||||
for eachFrame in odb.steps['Step-3'].frames:
|
||||
if eachFrame.frameValue>.5:
|
||||
dist=0.
|
||||
for eachValue in eachFrame.fieldOutputs["U"].getSubset(region=aSet).values:
|
||||
x=eachValue.data[0]
|
||||
y=eachValue.data[1]
|
||||
dist=dist+sqrt(x*x+y*y)
|
||||
dist=dist/(len(eachFrame.fieldOutputs["U"].getSubset(region=aSet).values))
|
||||
print dist,eachFrame.frameValue
|
||||
outFile.write('%f %f \n'%(dist,eachFrame.frameValue))
|
||||
outFile.close()
|
40
Biomaterials13/Scripts/plaque.f95
Normal file
40
Biomaterials13/Scripts/plaque.f95
Normal file
|
@ -0,0 +1,40 @@
|
|||
Program Balloon_Wrap
|
||||
!
|
||||
! Program to map plaque from flat to cylindrical shape.
|
||||
!
|
||||
real pi,x_cor,y_cor,z_cor,theta,radius,theta_hat,rad_hat,alpha,beta,phi
|
||||
real inner_radius,outer_radius,num_folds,multiplier
|
||||
integer node_num
|
||||
!
|
||||
open(unit=10,file='in.dat',status='old')
|
||||
open(unit=11,file='out.dat',status='unknown')
|
||||
!
|
||||
tb=0.2
|
||||
A=0.5
|
||||
ecen=0.2
|
||||
t1=5.
|
||||
t2=5.
|
||||
xp1=0.5
|
||||
xp2=0.5
|
||||
rL1=11.
|
||||
rL2=8.6708
|
||||
radius=1.38
|
||||
!
|
||||
do i=1, 69264
|
||||
read(10,*)node_num,x_cor,y_cor,z_cor
|
||||
rFraction=z_cor/tb
|
||||
rindex1=(y_cor/rL1)**(-log(2.)/log(xp1))
|
||||
rbracket1=(sin(3.1415*rindex1))**t1
|
||||
rad_plaque=1.+A*rbracket1
|
||||
rheight1=tb+(A-tb)*rbracket1
|
||||
!
|
||||
z_cor=rheight1*rFraction
|
||||
!
|
||||
xfrac=x_cor/rL2
|
||||
theta=x_cor/radius
|
||||
x_cor=(radius-rad_plaque*z_cor)*cos(theta)
|
||||
y_cor=y_cor
|
||||
z_cor=(radius-rad_plaque*z_cor)*sin(theta)+ecen*rbracket1*rFraction
|
||||
write(11,*)node_num,',',x_cor,',',y_cor,',',z_cor
|
||||
enddo
|
||||
end program
|
40
Biomaterials13/Scripts/quickcorrosion.py
Normal file
40
Biomaterials13/Scripts/quickcorrosion.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
# Import Neccesary Abaqus Modules
|
||||
from abaqusConstants import *
|
||||
from abaqus import *
|
||||
from odbAccess import *
|
||||
import regionToolset
|
||||
import sys
|
||||
import os
|
||||
import interaction
|
||||
import random
|
||||
mname='StraightMagic2'
|
||||
mtype=1
|
||||
jobName=mname
|
||||
aModel=mdb.models[mname]
|
||||
aAss=aModel.rootAssembly
|
||||
bPart=aModel.parts['Stent1']
|
||||
random.seed(2344564)
|
||||
incFile=open('NBR.inc','w')
|
||||
onSurf=[]
|
||||
for i in range(0,300000):
|
||||
onSurf.append(0)
|
||||
incFile.write("*INITIAL CONDITIONS,TYPE=SOLUTION \n")
|
||||
if mtype==1:
|
||||
for eachSN in bPart.sets['Set-1'].elements:
|
||||
onSurf[eachSN.label]=1
|
||||
for eachElement in bPart.elements:
|
||||
label=eachElement.label
|
||||
nbrs=[]
|
||||
for eachNbr in eachElement.getAdjacentElements():
|
||||
nbrs.append(eachNbr.label)
|
||||
for i in range(0,6-len(eachElement.getAdjacentElements())):
|
||||
nbrs.append(0)
|
||||
if onSurf[label]==1:
|
||||
rnum=random.weibullvariate(1.,0.2)
|
||||
else:
|
||||
rnum=0.
|
||||
incFile.write("Assembly.Stent1-1.%i, %i, %i, %i, %i, %i, %i, %i, \n"%(label,label,
|
||||
nbrs[0],nbrs[1],nbrs[2],nbrs[3],nbrs[4],nbrs[5]))
|
||||
incFile.write("%i, %f, %i, %i, \n"%(0,rnum,onSurf[label],0))
|
||||
incFile.close()
|
||||
|
12
Biomaterials13/Scripts/wrap.py
Normal file
12
Biomaterials13/Scripts/wrap.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
from abaqusConstants import *
|
||||
from abaqus import *
|
||||
aModel=mdb.models['Straight']
|
||||
aPart=aModel.parts['PLAQUE1']
|
||||
Radius=15.
|
||||
for eachnode in aPart.nodes:
|
||||
theta=eachnode.coordinates[1]/Radius
|
||||
newcoord1=(Radius-eachnode.coordinates[0])*sin(theta)
|
||||
newcoord2=(Radius-eachnode.coordinates[0])*cos(theta)
|
||||
newcoord3=eachnode.coordinates[2]
|
||||
aPart.editNode(nodes=eachnode,coordinate1=newcoord1,coordinate2=newcoord2,
|
||||
coordinate3=newcoord3)
|
55
Biomaterials13/Scripts/wrap_balloon.f95
Normal file
55
Biomaterials13/Scripts/wrap_balloon.f95
Normal file
|
@ -0,0 +1,55 @@
|
|||
Program Balloon_Wrap
|
||||
!
|
||||
! Program to map an unfolded ballon geometry onto a folded configuration (Based on Laroche Paper)
|
||||
! Input: File containing nodal coords of ballon geometry (Abaqus INP Format)
|
||||
! Output: File containing nodal coords of mapped ballon geometry (Abaqus INP Format)
|
||||
! Rev. 1 - J. Grogan - 07/07/10
|
||||
!
|
||||
real pi,x_cor,y_cor,z_cor,theta,radius,theta_hat,rad_hat,alpha,beta,phi
|
||||
real inner_radius,outer_radius,num_folds,multiplier
|
||||
integer node_num
|
||||
logical outer_flap
|
||||
!
|
||||
open(unit=10,file='in.dat',status='old')
|
||||
open(unit=11,file='out.dat',status='unknown')
|
||||
!
|
||||
pi=acos(-1.)
|
||||
inner_radius=0.25
|
||||
outer_radius=0.43
|
||||
num_folds=3.
|
||||
phi=(2*pi)/num_folds
|
||||
outer_flap=.false.
|
||||
!
|
||||
do i=1, 9821
|
||||
read(10,*)node_num,x_cor,y_cor,z_cor
|
||||
theta=(atan2(z_cor,x_cor))
|
||||
radius=sqrt(z_cor*z_cor+x_cor*x_cor)
|
||||
!
|
||||
if(theta<0.)then
|
||||
theta=theta+2*pi
|
||||
endif
|
||||
!
|
||||
beta=(phi/2.)*(1.+(2*radius)/(inner_radius+outer_radius))
|
||||
alpha=((outer_radius+inner_radius)/(2*radius))*beta
|
||||
!
|
||||
do j=1,num_folds
|
||||
if((theta>=(j-1)*phi).and.(theta<=(alpha+(j-1)*phi)))then
|
||||
multiplier=j-1
|
||||
outer_flap=.true.
|
||||
elseif((theta>=(alpha+(j-1)*phi)).and.(theta<=(j*phi)))then
|
||||
multiplier=j
|
||||
outer_flap=.false.
|
||||
endif
|
||||
enddo
|
||||
!
|
||||
if(outer_flap)then
|
||||
theta_hat=(beta/alpha)*(theta-multiplier*phi)+multiplier*phi
|
||||
rad_hat=inner_radius+((outer_radius-inner_radius)/beta)*(theta_hat-multiplier*phi)
|
||||
else
|
||||
theta_hat=((beta-phi)/(phi-alpha))*(multiplier*phi-theta)+multiplier*phi
|
||||
rad_hat=inner_radius+((outer_radius-inner_radius)/(beta-phi))*(theta_hat-multiplier*phi)
|
||||
endif
|
||||
!
|
||||
write(11,*)node_num,',',rad_hat*cos(theta_hat),',',y_cor,',',rad_hat*sin(theta_hat)
|
||||
enddo
|
||||
end program
|
Loading…
Add table
Add a link
Reference in a new issue