Add scripts and inp files.

This commit is contained in:
James Grogan 2024-05-13 20:50:21 +01:00
parent ad937f2602
commit e19f869a1e
390 changed files with 6580687 additions and 10 deletions

View file

@ -0,0 +1,290 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
randomSeed=[39928822]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,1):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.1
ySize=0.03
#
# Microstructure Geometry
charLength=0.0119# Grain Side Length
numX=100
numY=100
numGrains=120 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Voronoi' # Options: Square, Hexagon, Voronoi
meshSize=0.01
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,292 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
#randomSeed=[39928822]
randomSeed=[2388997]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,10):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.8
ySize=0.1
#
# Microstructure Geometry
charLength=0.0119# Grain Side Length
numX=800
numY=100
# numGrains=528 # Voronoi Only
numGrains=840 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Voronoi' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,292 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
#randomSeed=[39928822]
randomSeed=[3344993]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,10):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.8
ySize=0.15
#
# Microstructure Geometry
charLength=0.0119# Grain Side Length
numX=800
numY=150
# numGrains=528 # Voronoi Only
numGrains=1279 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Voronoi' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
VerFile.close()

View file

@ -0,0 +1,292 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
#randomSeed=[39928822]
randomSeed=[41557]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,1):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.1
ySize=0.5
#
# Microstructure Geometry
charLength=0.00595 #Grain Side Length
numX=10
numY=70
# numGrains=528 # Voronoi Only
numGrains=127 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Hexagon' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,293 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
#randomSeed=[39928822]
randomSeed=[41557]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,1):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.1
ySize=0.008925
#
# Microstructure Geometry
charLength=0.00595# Grain Side Length
numX=15
numY=5
# numGrains=528 # Voronoi Only
numGrains=127 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Hexagon' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
# VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
# wedgeAngle1=0.0, wedgeAngle2=0.0)
VerModel.HomogeneousSolidSection(name=mlabel,material=mlabel, thickness=0.1)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
# elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
elemType1 = mesh.ElemType(elemCode=CPE4R)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,292 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
#randomSeed=[39928822]
randomSeed=[41557]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,10):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.8
ySize=0.06
#
# Microstructure Geometry
charLength=0.0119# Grain Side Length
numX=800
numY=60
# numGrains=528 # Voronoi Only
numGrains=500 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Voronoi' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=20.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (24.00, 1.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,290 @@
# GrainGen V3.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D through the Abaqus geometry kernel. - J. Grogan, 25/09/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import regionToolset
import mesh
import step
import part
import interaction
import subprocess
randomSeed=[39928822]
randomSeed.append(39764)
randomSeed.append(19230045)
randomSeed.append(452398)
randomSeed.append(872315)
randomSeed.append(794738)
randomSeed.append(224492579)
randomSeed.append(96502382)
randomSeed.append(4921299)
randomSeed.append(3113145)
randomSeed.append(36677835)
for eachModel in range(0,1):
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
#
# Underlying Geometry
xSize=0.01
ySize=0.01
#
# Microstructure Geometry
charLength=0.01# Grain Side Length
numX=1
numY=1
numGrains=82 # Voronoi Only
hardRad=0.00 # Voronoi Only
#
# Other Parametersvgrain vumat
grainType='Square' # Options: Square, Hexagon, Voronoi
meshSize=0.001
analysis='Tension' # Options: Tension, Bending
#
# Draw Base Part
BasePart=VerModel.Part(name='Base', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
BasePart.DatumPointByCoordinate((0,0,0))
BasePart.DatumPointByCoordinate((xSize,0,0))
BasePart.DatumPointByCoordinate((0,ySize,0))
pdatums=BasePart.datums
BasePart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
BasePart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = BasePart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
BaseSketch = VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
#
BaseSketch.Line(point1=(0.,0.),point2=(xSize,0.))
BaseSketch.Line(point1=(xSize,0.),point2=(xSize,ySize))
BaseSketch.Line(point1=(xSize,ySize),point2=(0.,ySize))
BaseSketch.Line(point1=(0.,ySize),point2=(0.,0.))
BasePart.BaseShell(sketch=BaseSketch)
BasePart=VerModel.parts['Base']
#
# Draw Microstructure and Partition Base Part
ParSketch=VerModel.ConstrainedSketch(name='Base',sheetSize=200, transform=partTransform)
if grainType=='Square':
offset=0.
for i in range(0,numX):
ParSketch.Line(point1=(offset,0.),point2=(offset,numY*charLength))
offset=offset+charLength
offset=0.
for i in range(0,numY):
ParSketch.Line(point1=(0.,offset),point2=(numX*charLength,offset))
offset=offset+charLength
elif grainType=='Hexagon':
yLength=sin(radians(30.))*charLength
xLength=cos(radians(30.))*charLength
offsetX=0.
for i in range(0,numX):
offsetY=0.
for j in range(0,numY):
if j%2==0:
xPos=offsetX
else:
xPos=offsetX+xLength
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xLength+xPos,yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,+yLength+offsetY),point2=(xPos,2.*yLength+offsetY))
ParSketch.Line(point1=(xLength+xPos,-yLength+offsetY),point2=(xPos,-2.*yLength+offsetY))
offsetY=offsetY+3.*yLength
offsetX=offsetX+2.*xLength
elif grainType=='Voronoi':
random.seed(randomSeed[eachModel])
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(numGrains*9))
xlist=[0.]
ylist=[0.]
#
#Generate Point Seeds - Hardcore Voronoi Method Optional
for i in range(0,numGrains):
outside=False
while outside==False:
xcor=random.random()*xSize
ycor=random.random()*ySize
if hardRad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hardRad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor+ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor+xSize,ycor-ySize))
qhullin.write("%18.6f %18.6f \n"%(xcor-xSize,ycor+ySize))
qhullin.close()
#
# Generate tesselation externally and post-process results
scales=open('scales.dat','w')
scales.write("%18.6f %18.6f \n"%(xSize,ySize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
#
# Generate Partition Sketch
for i in range(0,num_cells):
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
for j in range(0,num_verts-1):
ParSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
ParSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i
# BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch)
#
# Generate Sections and Section Assignments
labelcount=1
regions=BasePart.faces
for eachregion in regions:
mlabel='Mat'+str(labelcount)
VerModel.PEGSection(name=mlabel, material=mlabel, thickness=0.01,
wedgeAngle1=0.0, wedgeAngle2=0.0)
BasePart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
#
# Mesh Part
BasePart.ReferencePoint(point=(0.0, 0.0, 0.0))
if grainType=='Square':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=STRUCTURED)
elif grainType=='Hexagon':
offsetX=0.
offsetY=0.
ParSketch2=VerModel.ConstrainedSketch(name='Hex',sheetSize=200, transform=partTransform)
for i in range(0,2*numX):
ParSketch2.Line(point1=(offsetX,0.),point2=(offsetX,2.*charLength*numY))
offsetX=offsetX+xLength
for i in range(0,numY):
ParSketch2.Line(point1=(0.,offsetY),point2=(2.*charLength*numX,offsetY))
offsetY=offsetY+3.*yLength
BasePart.PartitionFaceBySketch(faces=BasePart.faces, sketch=ParSketch2)
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD, technique=SWEEP)
elif grainType=='Voronoi':
BasePart.setMeshControls(regions=BasePart.faces, elemShape=QUAD_DOMINATED, technique=FREE)
BasePart.seedPart(size=meshSize)
pickedRegions =(BasePart.faces, )
elemType1 = mesh.ElemType(elemCode=CPEG8R, elemLibrary=STANDARD)
#elemType1 = mesh.ElemType(elemCode=CPEG4R, elemLibrary=STANDARD,hourglassControl=ENHANCED)
BasePart.setElementType(regions=pickedRegions, elemTypes=(elemType1,))
BasePart.generateMesh()
#
#Steps
VerModel.StaticStep(name='Step-1', previous='Initial',
maxNumInc=100000, initialInc=0.03, minInc=1e-07, maxInc=0.15, nlgeom=ON, timePeriod=35.)
VerModel.fieldOutputRequests['F-Output-1'].setValues(variables=(
'LE', 'RF', 'S', 'U'), timeInterval=0.2, timeMarks=OFF)
#
#Boundary Conditions
VerAssembly.Instance(name='Strut',part=BasePart, dependent=ON)
iNodes=VerAssembly.instances['Strut'].nodes
toler=0.01*meshSize
Left=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=ySize+toler)
BLeft=iNodes.getByBoundingBox(xMin=-toler,xMax=toler,yMin=-toler,yMax=toler)
Right=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=toler,yMax=ySize+toler)
BRight=iNodes.getByBoundingBox(xMin=xSize-toler,xMax=xSize+toler,yMin=-toler,yMax=toler)
#
Lregion=regionToolset.Region(nodes=Left)
BLregion=regionToolset.Region(nodes=BLeft)
Rregion=regionToolset.Region(nodes=Right)
BRregion=regionToolset.Region(nodes=BRight)
#
VerModel.SmoothStepAmplitude(name='Amp-1', timeSpan=TOTAL, data=(( 0.0, 0.0), (48.00, 2.0)))
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=Lregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY1', createStepName='Initial',
region=BLregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
if analysis=='Tension':
VerModel.DisplacementBC(name='Tension', createStepName='Step-1',
region=BRregion, u1=0.5*xSize, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY2', createStepName='Initial',
region=BRregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Tension'].setValues(amplitude='Amp-1')
else:
VerModel.DisplacementBC(name='Bending', createStepName='Step-1',
region=BRregion, u1=UNSET, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=-6., amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.boundaryConditions['Bending'].setValues(amplitude='Amp-1')
#
VerAssembly.Set(nodes=Right, name='Right')
VerAssembly.Set(nodes=BRight, name='BRight')
if analysis=='Tension':
VerModel.Equation(name='Constraint-1', terms=((1.0, 'Right', 1), ( -1.0, 'BRight', 1)))
else:
region1=VerAssembly.sets['BRight']
region2=VerAssembly.sets['Right']
VerModel.MultipointConstraint(name='Constraint-2',
controlPoint=region1, surface=region2, mpcType=BEAM_MPC,
userMode=DOF_MODE_MPC, userType=0, csys=None)
#
#Create Job and write input file
if grainType=='Square':
letter1='S'
elif grainType=='Hexagon':
letter1='H'
elif grainType=='Voronoi':
letter1='V'
if analysis=='Tension':
letter2='T'
else:
letter2='B'
label='W'+str(numY)+'L'+str(numX)+letter1+letter2+str(eachModel)
VerFile.Job(name=label, model='Model-1', type=ANALYSIS,userSubroutine='ucrystal.for')
VerFile.jobs[label].writeInput(consistencyChecking=OFF)
# VerFile.close()

View file

@ -0,0 +1,164 @@
# GrainGen V2.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D and 3-D through the Abaqus geometry kernel. - J. Grogan, 09/06/2011
#
# Import Abaqus and External Modules
from abaqusConstants import *
from abaqus import *
import random
import subprocess
import regionToolset
import mesh
import step
import part
import interaction
import GeomModules
#
# Create Model Database
VerFile=Mdb(pathName="MStructure")
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
#
# Assign Model Parameters
shape=1 # 1 - Square, 2- Hex, 3 -Dodec, 4- Voronoi
part_type=3 # 2 - Shell, 3 - Solid
dimension=3 # 2 - 2D, 3 - 3D
rad=0.00595 # Characteristic Dimension (except Voronoi)
meshsize=0.001 # Global Mesh Seed Size
num_high=20 # Number of Grains in X-Dir
num_wide=3 # Number of Grains in Y-Dir
num_thick=3 # Number of Grains in Z-Dir
num_grains=210# Target Number of Grains (Voronoi Only)
scalex=3.4 # Voronoi Part Scale X-Dir (Voronoi Only)
scaley=1. # Voronoi Part Scale Y-Dir (Voronoi Only)
scalez=1. # Voronoi Part Scale Z-Dir (Voronoi Only)
ana_type=1 # 1 - Crystal Plasticity, 2 - Corrosion
hard_rad=0.0 # Hardcore voronoi min. radius (Voronoi Only)
random_seed=2244763 # Random seed for voronoi grain generation or random vector generation
#
# Choose Script Function - Set to 1 to activate
assemble_grains = 1 # Assemble Multiple Grains and Merge Them
boolean_cut = 1 # Perform Boolean Cut Operation
mesh_part = 0 # Mesh the Final Geometry
mat_props = 0 # Assign Material Properties
bound_conds = 0 # Generate steps and apply BCs
write_output =0 # Write Output File
post_proc = 0 # Postprocess INP file (Corrosion Only)
#
# For 2-D Solids thickness is set equal to one element
if dimension==3:
extrude_depth=rad
else:
extrude_depth=meshsize
num_thick=1
#
# Draw a Square Grain
if shape==1:
GeomModules.DrawSquare(VerModel,part_type,rad,extrude_depth)
#
# Draw a Hexagonal Grain
if shape==2:
GeomModules.DrawHexagon(VerModel,part_type,rad,extrude_depth)
#
# Draw a Dodecahedral Grain
if shape==3:
GeomModules.DrawDodec(VerModel,rad)
#
# Draw a Voronoi Tessellation
if shape==4:
if dimension==2:
maxsize=max(scalex,scaley)
GeomModules.Voronoi2D(VerModel,part_type,extrude_depth,num_grains,maxsize,hard_rad,random_seed)
else:
maxsize=max(scalex,scaley,scalez)
GeomModules.Voronoi3D(VerModel,num_grains,maxsize,hard_rad,random_seed)
#
# Assemble Base Parts
if assemble_grains==1:
if shape<=3:
VerPart=VerModel.parts['Base']
GeomModules.PatternParts(num_high,num_wide,num_thick,VerPart,rad,shape,VerModel)
#
# Make a Boolean Template
if boolean_cut==1:
if shape>1:
GeomModules.BooleanPart(VerModel,part_type,rad,extrude_depth,num_high,
num_wide,num_thick,shape,dimension,scalex,scaley,scalez)
BoolPart=VerModel.parts['Template']
#
#Perform Boolean Cut
if shape==1:
VerPart=VerModel.parts['Merged']
del VerAssembly.instances['Merged-1']
else:
VerAssembly.InstanceFromBooleanCut(name='FinalPart',
instanceToBeCut=VerAssembly.instances['Merged-1'],
cuttingInstances=(VerAssembly.instances['Template-1'], ),
originalInstances=DELETE)
del VerAssembly.instances['FinalPart-1']
VerPart=VerModel.parts['FinalPart']
#
# Mesh Part
if mesh_part==1:
if shape<3:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=HEX, technique=STRUCTURED)
if shape==3:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=TET, technique=FREE)
if shape==4:
if dimension==2:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=HEX, technique=SWEEP,
algorithm=ADVANCING_FRONT)
else:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=TET, technique=FREE)
VerPart.seedPart(size=meshsize)
VerPart.generateMesh()
#
# For Corrosion Analysis Output Part Vertices and Element Connectivity
if ana_type==2:
GeomModules.VertsConn(VerPart,dimension)
ecor=open('ecor.dat','w')
for eachface in VerPart.faces:
if len(eachface.getAdjacentFaces())<7.:
xnor=eachface.getNormal()[0]
ynor=eachface.getNormal()[1]
znor=eachface.getNormal()[2]
if (xnor==0.)and(znor==0.):
# if (ynor==1.)or(ynor==-1.):
if (ynor==1.):
ecor.write("%6.4f %6.4f %6.4f\n"%(xnor,ynor,znor))
ecor.close()
#
#Generate Materials and Sections
if mat_props==1:
GeomModules.MatGen(ana_type,VerPart,VerModel,part_type,meshsize,random_seed)
#
#Steps and Boundary Conditions
if bound_conds==1:
VerModel.ExplicitDynamicsStep(name='Corrode', previous='Initial',
massScaling=((SEMI_AUTOMATIC, MODEL, AT_BEGINNING, 0.0, 1e-06,
BELOW_MIN, 0, 0, 0.0, 0.0, 0, None), ))
VerModel.ExplicitDynamicsStep(name='Load', previous='Corrode',
timePeriod=1.)
VerModel.steps['Corrode'].Restart(numberIntervals=2,overlay=OFF,timeMarks=OFF)
VerModel.steps['Load'].Restart(numberIntervals=2,overlay=OFF, timeMarks=OFF)
VerModel.FieldOutputRequest(name='F-Output-1',
createStepName='Corrode', variables=('A', 'CSTRESS', 'LE', 'PE',
'PEEQ', 'RF', 'S', 'SDV', 'STATUS', 'U','V'), numIntervals=100)
#
#Loads and BCs
VerAssembly.Instance(name='CorPart',part=VerPart, dependent=ON)
iNodes=VerAssembly.instances['CorPart'].nodes
# GeomModules.S1BCs(iNodes,VerModel,num_high,num_wide,num_thick,shape,
# dimension,extrude_depth,rad,scalex,scaley,scalez)
#
#VerAssembly.Instance(name='CorPart',part=VerPart, dependent=ON)
#Create Job and write input file
if write_output ==1:
VerFile.Job(name='GeomGenTemp', model='Model-1', type=ANALYSIS,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE,userSubroutine='',
parallelizationMethodExplicit=DOMAIN,numDomains=1,multiprocessingMode=DEFAULT, numCpus=1)
VerFile.jobs['GeomGenTemp'].writeInput(consistencyChecking=OFF)
#
# Perform Postprocessing for corrosion analysis
if post_proc ==1:
retcode=subprocess.call("GeomGenPost2.exe")

View file

@ -0,0 +1,143 @@
# GrainGen V2.0
# This script generates idealised and representative meshed micro-structure geometries
# in 2-D and 3-D through the Abaqus geometry kernel. - J. Grogan, 09/06/2011
#
# Import Neccesary Abaqus Modules
from abaqusConstants import *
from abaqus import *
import random
import subprocess
import regionToolset
import mesh
import step
import part
import interaction
import sys
import GeomModules
# Create CAE File and Set Up Model
VerFile=Mdb(pathName="MStructure")
ModelParams=open('pythonoptions.dat','r')
VerModel=VerFile.models['Model-1']
VerAssembly=VerModel.rootAssembly
# Read Model Params from File
shape=int(ModelParams.readline())
part_type=int(ModelParams.readline())
dimension=int(ModelParams.readline())
rad=float(ModelParams.readline())
meshsize=float(ModelParams.readline())
num_high=int(ModelParams.readline())
num_wide=int(ModelParams.readline())
num_thick=int(ModelParams.readline())
num_grains=num_high*num_wide*num_thick
num_grains=int(ModelParams.readline())
scalex=float(ModelParams.readline())
scaley=float(ModelParams.readline())
ana_type=int(ModelParams.readline())
hard_rad=float(ModelParams.readline())
# For 2-D Solids thickness is set equal to one element
if dimension==3:
extrude_depth=rad
else:
extrude_depth=meshsize
num_thick=1
# Square Grains
if shape==1:
GeomModules.DrawSquare(VerModel,part_type,rad,extrude_depth)
# Hexagonal Grains
if shape==2:
GeomModules.DrawHexagon(VerModel,part_type,rad,extrude_depth)
# Dodecahedral Grains
if shape==3:
GeomModules.DrawDodec(VerModel,part_type,rad,extrude_depth)
# Voronoi Tessellation
if shape==4:
if dimension==2:
GeomModules.Voronoi2D(VerModel,part_type,rad,extrude_depth,num_grains,scalex,scaley,hard_rad)
else:
GeomModules.Voronoi3D(VerModel,part_type,rad,extrude_depth,num_grains,hard_rad)
scalex=scalex/1.
scaley=scaley/2.
# Make Boolean Template
if shape>1:
GeomModules.BooleanPart(VerModel,part_type,rad,extrude_depth,num_high,
num_wide,num_thick,shape,dimension,scalex,scaley)
BoolPart=VerModel.parts['Template']
# Instance base part - offset instances as required
if shape<=3:
VerPart=VerModel.parts['Base']
GeomModules.PatternParts(num_high,num_wide,num_thick,VerPart,rad,shape,VerModel)
OldPart=VerModel.parts['Merged']
if shape==1:
VerPart=VerModel.parts['Merged']
del VerAssembly.instances['Merged-1']
else:
VerAssembly.InstanceFromBooleanCut(name='FinalPart',
instanceToBeCut=VerAssembly.instances['Merged-1'],
cuttingInstances=(VerAssembly.instances['Template-1'], ),
originalInstances=DELETE)
del VerAssembly.instances['FinalPart-1']
VerPart=VerModel.parts['FinalPart']
# Mesh Part
if meshsize>0.:
if shape<3:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=HEX, technique=STRUCTURED)
if shape==3:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=TET, technique=FREE)
if shape==4:
if dimension==2:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=HEX, technique=SWEEP,
algorithm=ADVANCING_FRONT)
else:
VerPart.setMeshControls(regions=VerPart.cells, elemShape=TET, technique=FREE)
VerPart.seedPart(size=meshsize)
VerPart.generateMesh()
# For Corrosion Analysis Output Part Vertices and Element Connectivity
if ana_type==2:
GeomModules.VertsConn(OldPart,VerPart,dimension,shape,rad,extrude_depth)
ecor=open('ecor.dat','w')
for eachface in VerPart.faces:
if len(eachface.getAdjacentFaces())<7.:
xnor=eachface.getNormal()[0]
ynor=eachface.getNormal()[1]
znor=eachface.getNormal()[2]
if (xnor==0.)and(znor==0.):
# if (ynor==1.)or(ynor==-1.):
if (ynor==1.):
for eachelement in eachface.getElements():
ecor.write("%i\n"%(eachelement.label))
ecor.close()
# Generate Materials and Sections
MatName='Grain'
CorRate=0.05
GeomModules.MatGen(MatName,CorRate,ana_type,VerPart,VerModel,part_type,meshsize)
MatName='Boundary'
CorRate=0.5
GeomModules.MatGen(MatName,CorRate,ana_type,VerPart,VerModel,part_type,meshsize)
else:
GeomModules.MatGen('',0.,ana_type,VerPart,VerModel,part_type,meshsize)
#STEPS
VerModel.ExplicitDynamicsStep(name='Corrode', previous='Initial',
massScaling=((SEMI_AUTOMATIC, MODEL, AT_BEGINNING, 0.0, 1e-06,
BELOW_MIN, 0, 0, 0.0, 0.0, 0, None), ))
VerModel.ExplicitDynamicsStep(name='Load', previous='Corrode',
timePeriod=1.)
VerModel.steps['Corrode'].Restart(numberIntervals=2,overlay=OFF,timeMarks=OFF)
VerModel.steps['Load'].Restart(numberIntervals=2,overlay=OFF, timeMarks=OFF)
#Loads and BCs
VerAssembly.Instance(name='CorPart',part=VerPart, dependent=ON)
iNodes=VerAssembly.instances['CorPart'].nodes
GeomModules.S1BCs(iNodes,VerModel,num_high,num_wide,num_thick,shape,
dimension,extrude_depth,rad,scalex,scaley)
#Create and Submit Job
VerModel.FieldOutputRequest(name='F-Output-1',
createStepName='Corrode', variables=(
'A', 'CSTRESS', 'LE', 'PE', 'PEEQ', 'RF', 'S', 'SDV', 'STATUS', 'U',
'V'), numIntervals=100)
VerFile.Job(name='GeomGenTemp', model='Model-1', description='', type=ANALYSIS,
atTime=None, waitMinutes=0, waitHours=0, queue=None,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,
modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',
scratch='', parallelizationMethodExplicit=DOMAIN, numDomains=4,
activateLoadBalancing=False, multiprocessingMode=DEFAULT, numCpus=4)
#OptFile.jobs['StentOpt1'].submit(consistencyChecking=OFF)
VerFile.jobs['GeomGenTemp'].writeInput(consistencyChecking=OFF)

View file

@ -0,0 +1,853 @@
# Draw a Square Grain
#
def DrawSquare(VerModel,part_type,rad,extrude_depth):
from abaqusConstants import *
from abaqus import *
label='Base'
if part_type==3:
VerPart=VerModel.Part(name=label, dimensionality=THREE_D,type=DEFORMABLE_BODY)
else:
VerPart=VerModel.Part(name=label, dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
VerPart.DatumPointByCoordinate((0,0,0))
VerPart.DatumPointByCoordinate((1,0,0))
VerPart.DatumPointByCoordinate((0,1,0))
pdatums=VerPart.datums
VerPart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
VerPart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = VerPart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
VerSketch = VerModel.ConstrainedSketch(name=label,sheetSize=200, transform=partTransform)
VerSketch.Line(point1=(0.,0.),point2=(rad,0.))
VerSketch.Line(point1=(rad,0.),point2=(rad,rad))
VerSketch.Line(point1=(rad,rad),point2=(0.,rad))
VerSketch.Line(point1=(0.,rad),point2=(0.,0.))
if part_type==3:
VerPart.BaseSolidExtrude(sketch=VerSketch,depth=extrude_depth)
else:
VerPart.BaseShell(sketch=VerSketch)
# Draw a Hexagonal Grain
#
def DrawHexagon(VerModel,part_type,rad,extrude_depth):
from abaqusConstants import *
from abaqus import *
label='Base'
VerAssembly=VerModel.rootAssembly
if part_type==3:
VerPart=VerModel.Part(name=label, dimensionality=THREE_D,type=DEFORMABLE_BODY)
else:
VerPart=VerModel.Part(name=label, dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
VerPart.DatumPointByCoordinate((0,0,0))
VerPart.DatumPointByCoordinate((1,0,0))
VerPart.DatumPointByCoordinate((0,1,0))
pdatums=VerPart.datums
VerPart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
VerPart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = VerPart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
VerSketch = VerModel.ConstrainedSketch(name=label,sheetSize=200, transform=partTransform)
yheight=sin(radians(30.))
xheight=cos(radians(30.))
VerSketch.Line(point1=(0.,0.),point2=(rad*xheight,rad*yheight))
VerSketch.Line(point1=(rad*xheight,rad*yheight),point2=(rad*xheight,rad*yheight+rad))
VerSketch.Line(point1=(rad*xheight,rad*yheight+rad),point2=(0.,2.*rad*yheight+rad))
VerSketch.Line(point1=(0.,2.*rad*yheight+rad),point2=(-rad*xheight,rad*yheight+rad))
VerSketch.Line(point1=(-rad*xheight,rad*yheight+rad),point2=(-rad*xheight,rad*yheight))
VerSketch.Line(point1=(-rad*xheight,rad*yheight),point2=(0.,0.))
if part_type==3:
VerPart.BaseSolidExtrude(sketch=VerSketch,depth=extrude_depth)
else:
VerPart.BaseShell(sketch=VerSketch)
BasePart=VerModel.parts['Base']
BasePartCells = BasePart.cells
BasePartFaces = BasePart.faces
BasePartVerts = BasePart.vertices
if part_type==3:
BasePart.PartitionCellByPlaneThreePoints(point1=BasePartVerts[4], point2=BasePartVerts[10],
point3=BasePartVerts[11], cells=BasePartCells)
else:
BasePart.PartitionFaceByShortestPath(point1=BasePartVerts[4], point2=BasePartVerts[1],
faces=BasePartFaces)
# Draw a Dodecahedral Grain
#
def DrawDodec(VerModel,rad):
from abaqusConstants import *
from abaqus import *
label='BaseTemp'
VerAssembly=VerModel.rootAssembly
VerPart=VerModel.Part(name=label, dimensionality=THREE_D,type=DEFORMABLE_BODY)
VerPart.DatumPointByCoordinate((0,0,0))
VerPart.DatumPointByCoordinate((1,0,0))
VerPart.DatumPointByCoordinate((0,1,0))
pdatums=VerPart.datums
VerPart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[2], point3=pdatums[3])
VerPart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
partTransform = VerPart.MakeSketchTransform(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
VerSketch = VerModel.ConstrainedSketch(name=label,sheetSize=200, transform=partTransform)
VerSketch.Line(point1=(0.,0.),point2=(sqrt(2.)*rad,rad))
VerSketch.Line(point1=(sqrt(2.)*rad,rad),point2=(0.,2.*rad))
VerSketch.Line(point1=(0.,2.*rad),point2=(-sqrt(2.)*rad,rad))
VerSketch.Line(point1=(-sqrt(2.)*rad,rad),point2=(0.,0.))
VerPart.BaseShell(sketch=VerSketch)
for i in range (1,13):
dodecname='dodec'+str(i)
VerAssembly.Instance(name=dodecname,part=VerPart, dependent=ON)
VerAssembly.translate(instanceList=('dodec2', ), vector=(0.,0.,-2.*sqrt(2.)*rad))
VerAssembly.rotate(instanceList=('dodec3','dodec4', ), axisPoint=(0.0, 0.0, 0.0),
axisDirection=(0.0, 1., 0.0), angle=90.0)
VerAssembly.translate(instanceList=('dodec3', ), vector=(sqrt(2.)*rad,0.,0.))
VerAssembly.translate(instanceList=('dodec4', ), vector=(-sqrt(2.)*rad,0.,0.))
VerAssembly.translate(instanceList=('dodec3','dodec4', ), vector=(0.,0.,-sqrt(2.)*rad))
VerAssembly.rotate(instanceList=('dodec5','dodec6','dodec7','dodec8',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(0., 0., 1.), angle=90.0)
VerAssembly.rotate(instanceList=('dodec5','dodec6','dodec7','dodec8',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(0., 1., 0.), angle=-45.0)
VerAssembly.rotate(instanceList=('dodec5','dodec6','dodec7','dodec8',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(1., 0., 1.), angle=-45.0)
VerAssembly.rotate(instanceList=('dodec6',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., 1., 0.), angle=90.0)
VerAssembly.rotate(instanceList=('dodec7',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., 1., 0.), angle=180.0)
VerAssembly.rotate(instanceList=('dodec8',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., 1., 0.), angle=270.0)
VerAssembly.rotate(instanceList=('dodec9','dodec10','dodec11','dodec12',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(0., 0., 1.), angle=-90.0)
VerAssembly.rotate(instanceList=('dodec9','dodec10','dodec11','dodec12',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(0., 1., 0.), angle=-45.0)
VerAssembly.rotate(instanceList=('dodec9','dodec10','dodec11','dodec12',),
axisPoint=(-sqrt(2.)*rad, rad, 0.0), axisDirection=(1., 0., 1.), angle=45.0)
VerAssembly.rotate(instanceList=('dodec10',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., -1., 0.), angle=90.0)
VerAssembly.rotate(instanceList=('dodec11',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., -1., 0.), angle=180.0)
VerAssembly.rotate(instanceList=('dodec12',),
axisPoint=(0., rad, -sqrt(2.)*rad), axisDirection=(0., -1., 0.), angle=270.0)
VerAssembly.InstanceFromBooleanMerge(name='Base', instances=(
VerAssembly.instances['dodec1'],
VerAssembly.instances['dodec2'], VerAssembly.instances['dodec3'],
VerAssembly.instances['dodec4'], VerAssembly.instances['dodec5'],
VerAssembly.instances['dodec6'], VerAssembly.instances['dodec7'],
VerAssembly.instances['dodec8'], VerAssembly.instances['dodec9'],
VerAssembly.instances['dodec10'],VerAssembly.instances['dodec11'],
VerAssembly.instances['dodec12'], ),
keepIntersections=ON, originalInstances=SUPPRESS, domain=GEOMETRY)
VerPart=VerModel.parts['Base']
VerPart.AddCells(faceList = VerPart.faces)
for i in range (1,12):
dodecname='dodec'+str(i)
del VerAssembly.instances[dodecname]
del VerAssembly.instances['Base-1']
# Draw a 2D Voronoi Tessellation
#
def Voronoi2D(VerModel,part_type,extrude_depth,num_grains,maxsize,hard_rad,random_seed):
from abaqusConstants import *
from abaqus import *
import random
import subprocess
xlist=[0.]
ylist=[0.]
VerAssembly=VerModel.rootAssembly
random.seed(random_seed)
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(2))
qhullin.write("%i \n"%(num_grains*9))
for i in range(0,num_grains):
outside=False
while outside==False:
xcor=random.random()*maxsize
ycor=random.random()*maxsize
if hard_rad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hard_rad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor+maxsize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor-maxsize,ycor))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor+maxsize))
qhullin.write("%18.6f %18.6f \n"%(xcor,ycor-maxsize))
qhullin.write("%18.6f %18.6f \n"%(xcor+maxsize,ycor+maxsize))
qhullin.write("%18.6f %18.6f \n"%(xcor-maxsize,ycor-maxsize))
qhullin.write("%18.6f %18.6f \n"%(xcor+maxsize,ycor-maxsize))
qhullin.write("%18.6f %18.6f \n"%(xcor-maxsize,ycor+maxsize))
qhullin.close()
scales=open('scales.dat','w')
scales.write("%18.6f \n"%(maxsize))
scales.close()
retcode=subprocess.call("qhull.exe v Qbb TI qhullin.dat o TO qhullout.dat")
retcode=subprocess.call("Voronoi2DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
for i in range(0,num_cells):
label='Cell'+str(i)
if part_type==3:
VerPart=VerModel.Part(name=label, dimensionality=THREE_D,type=DEFORMABLE_BODY)
else:
VerPart=VerModel.Part(name=label, dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
# Constuct Datum Point At Each Node
VerPart.DatumPointByCoordinate((0,0,0))
VerPart.DatumPointByCoordinate((1,0,0))
VerPart.DatumPointByCoordinate((0,1,0))
pdatums=VerPart.datums
# Constuct Datum Plane on Element Face and Datum Axis Along Element Base
VerPart.DatumPlaneByThreePoints(point1=pdatums[1],
point2=pdatums[2], point3=pdatums[3])
VerPart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[2])
# Sketch New Part Geometry Over Original Element
partTransform = VerPart.MakeSketchTransform(sketchPlane=pdatums[4],
sketchUpEdge=pdatums[5],
sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0,0,0))
VerSketch = VerModel.ConstrainedSketch(name=label,sheetSize=200,
transform=partTransform)
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
print i,num_verts
for j in range(0,num_verts-1):
VerSketch.Line(point1=(cordx[j],cordy[j]),point2=(cordx[j+1],cordy[j+1]))
x1.append([])
y1.append([])
x1[k]=cordx[j]
y1[k]=cordy[j]
x2.append([])
y2.append([])
x2[k]=cordx[j+1]
y2[k]=cordy[j+1]
k=k+1
VerSketch.Line(point1=(cordx[num_verts-1],cordy[num_verts-1]),
point2=(cordx[0],cordy[0]))
x1.append([])
y1.append([])
x1[k]=cordx[num_verts-1]
y1[k]=cordy[num_verts-1]
x2.append([])
y2.append([])
x2[k]=cordx[0]
y2[k]=cordy[0]
k=k+1
print i,num_verts,k
if part_type==3:
VerPart.BaseSolidExtrude(sketch=VerSketch, depth=extrude_depth)
else:
VerPart.Shell(sketchPlane=pdatums[4], sketchUpEdge=pdatums[5], sketchPlaneSide=SIDE1,
sketchOrientation=BOTTOM, sketch=VerSketch)
VerAssembly.Instance(name=label,part=VerPart)
inst=[]
inst.append([])
for i in range(0,num_cells):
inst[i]=VerAssembly.instances['Cell'+str(i)]
if i<num_cells-1:
inst.append([])
VerAssembly.InstanceFromBooleanMerge(name='Merged',
instances=inst,originalInstances=DELETE, keepIntersections=ON,domain=GEOMETRY)
# Draw a 3D Voronoi Tessellation
#
def Voronoi3D(VerModel,num_grains,maxsize,hard_rad,random_seed):
from abaqusConstants import *
from abaqus import *
import random
import subprocess
xlist=[0.]
ylist=[0.]
zlist=[0.]
VerAssembly=VerModel.rootAssembly
random.seed(random_seed)
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(3))
qhullin.write("%i \n"%(num_grains*27))
for i in range(0,num_grains):
outside=False
while outside==False:
xcor=random.random()*maxsize
ycor=random.random()*maxsize
zcor=random.random()*maxsize
if hard_rad==0.:
outside=True
break
if len(xlist)>1:
distold=1000.
for i in range(1,len(xlist)):
distnew=(xcor-xlist[i])*(xcor-xlist[i])+(ycor-ylist[i])*(ycor-ylist[i])
distnew=distnew+(zcor-zlist[i])*(zcor-zlist[i])
distnew=sqrt(distnew)
if distnew<distold:
distold=distnew
if distold>=hard_rad:
outside=True
else:
outside=True
xlist.append(xcor)
ylist.append(ycor)
zlist.append(zcor)
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor+maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor-maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor+maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor-maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor-maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor+maxsize,zcor))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor+maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor-maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor+maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor-maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor-maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor+maxsize,zcor+maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor+maxsize,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor,ycor-maxsize,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor+maxsize,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor-maxsize,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxsize,ycor-maxsize,zcor-maxsize))
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor-maxsize,ycor+maxsize,zcor-maxsize))
qhullin.close()
scales=open('scales.dat','w')
scales.write("%18.6f \n"%(maxsize))
scales.close()
retcode=subprocess.call("qvoronoi.exe TI qhullin.dat o Fi TO qhullout.dat")
retcode=subprocess.call("Voronoi3DPost.exe")
FortranFile=open('fortranout.dat')
num_cells=int(FortranFile.readline())
cordx=[]
cordy=[]
cordz=[]
x1=[]
y1=[]
x2=[]
y2=[]
k=0
for k in range(0,num_cells):
ibreak=0
num_hyp=int(FortranFile.readline())
for i in range(0,num_hyp):
label='C'+str(k)+'H'+str(i)
VerPart=VerModel.Part(name=label, dimensionality=THREE_D,type=DEFORMABLE_BODY)
# Constuct Datum Point At Each Node
num_verts=int(FortranFile.readline())
for j in range(0,num_verts):
coords=FortranFile.readline().split(',')
cordx.append([])
cordy.append([])
cordz.append([])
cordx[j]=float(coords[0])
cordy[j]=float(coords[1])
cordz[j]=float(coords[2])
VerPart.DatumPointByCoordinate((cordx[j],cordy[j],cordz[j]))
pdatums=VerPart.datums
p1x=pdatums[1].pointOn[0]
p1y=pdatums[1].pointOn[1]
p1z=pdatums[1].pointOn[2]
tol=1.e-4
for m in range(2,num_verts+1):
px=pdatums[m].pointOn[0]
py=pdatums[m].pointOn[1]
pz=pdatums[m].pointOn[2]
p1pk=sqrt((p1x-px)*(p1x-px)+(p1y-py)*(p1y-py)+(p1z-pz)*(p1z-pz))
if p1pk>tol:
index1=m
p2x=px
p2y=py
p2z=pz
break
for m in range(2,num_verts+1):
if m!=index1:
px=pdatums[m].pointOn[0]
py=pdatums[m].pointOn[1]
pz=pdatums[m].pointOn[2]
p1pk=sqrt((p1x-px)*(p1x-px)+(p1y-py)*(p1y-py)+(p1z-pz)*(p1z-pz))
p2pk=sqrt((p2x-px)*(p2x-px)+(p2y-py)*(p2y-py)+(p2z-pz)*(p2z-pz))
if p1pk>tol:
if p2pk>tol:
index2=m
break
VerPart.DatumPlaneByThreePoints(point1=pdatums[1], point2=pdatums[index1], point3=pdatums[index2])
VerPart.DatumAxisByTwoPoint(point1=pdatums[1],point2=pdatums[index1])
partTransform = VerPart.MakeSketchTransform(sketchPlane=pdatums[num_verts+1],
sketchUpEdge=pdatums[num_verts+2], sketchPlaneSide=SIDE1, sketchOrientation=BOTTOM, origin=(0.,0.,0.))
sklabel='Skbase'+'C'+str(k)+'H'+str(i)
VerSketch=VerModel.ConstrainedSketch(name=sklabel,sheetSize=200, transform=partTransform)
VerPart.projectReferencesOntoSketch(sketch=VerSketch, filter=COPLANAR_EDGES)
verts=VerSketch.vertices
centroidx=0.
centroidy=0.
angle=[]
jnum=[]
for j in range(0,num_verts):
centroidx=centroidx+verts[j].coords[0]
centroidy=centroidy+verts[j].coords[1]
centroidx=centroidx/float(num_verts)
centroidy=centroidy/float(num_verts)
for j in range(0,num_verts):
pointx=verts[j].coords[0]-centroidx
pointy=verts[j].coords[1]-centroidy
vertangle=atan2(pointy,pointx)
if vertangle<0.:
vertangle=2*pi+vertangle
angle.append(vertangle)
jnum.append(j)
icheck=0
while icheck==0:
icheck=1
for j in range(1,num_verts):
if angle[j]<angle[j-1]:
temp1=angle[j-1]
temp2=jnum[j-1]
angle[j-1]=angle[j]
angle[j]=temp1
jnum[j-1]=jnum[j]
jnum[j]=temp2
icheck=0
for j in range(1,num_verts):
x1=verts[jnum[j]].coords[0]
x2=verts[jnum[j-1]].coords[0]
y1=verts[jnum[j]].coords[1]
y2=verts[jnum[j-1]].coords[1]
VerSketch.Line(point1=(x1,y1),point2=(x2,y2))
VerSketch.Line(point1=(verts[jnum[num_verts-1]].coords[0],
verts[jnum[num_verts-1]].coords[1]),
point2=(verts[jnum[0]].coords[0],verts[jnum[0]].coords[1]))
VerPart.Shell(sketchPlane=pdatums[num_verts+1], sketchPlaneSide=SIDE1,
sketchUpEdge=pdatums[num_verts+2],sketchOrientation=BOTTOM,sketch=VerSketch)
label='Part'+'C'+str(k)+'H'+str(i)
VerAssembly.Instance(name=label,part=VerPart)
if ibreak==1:
continue
inst=[]
inst.append([])
for i in range(0,num_hyp):
inst[i]=VerAssembly.instances['Part'+'C'+str(k)+'H'+str(i)]
if i<num_hyp-1:
inst.append([])
VerAssembly.InstanceFromBooleanMerge(name='Merged'+str(k),
instances=inst,originalInstances=DELETE, keepIntersections=ON,domain=GEOMETRY)
shellpart=VerModel.parts['Merged'+str(k)]
try:
shellpart.AddCells(faceList = shellpart.faces)
except AbaqusException,errormessage:
print errormessage, 'Not Merged'
VerAssembly.Instance(name='Part'+str(k),part=shellpart, dependent=ON)
del VerAssembly.instances['Merged'+str(k)+'-1']
for i in range(0,num_hyp):
del VerModel.sketches['Skbase'+'C'+str(k)+'H'+str(i)]
del VerModel.parts['C'+str(k)+'H'+str(i)]
print float(k)/float(num_cells)
inst=[]
inst.append([])
for i in range(0,num_cells):
inst[i]=VerAssembly.instances['Part'+str(i)]
if i<num_cells-1:
inst.append([])
VerAssembly.InstanceFromBooleanMerge(name='Merged',
instances=inst,originalInstances=DELETE, keepIntersections=ON,domain=GEOMETRY)
# Make a Boolean Template Part
#
def BooleanPart(VerModel,part_type,rad,extrude_depth,
num_high,num_wide,num_thick,shape,dimension,scalex,scaley,scalez):
from abaqusConstants import *
from abaqus import *
VerAssembly=VerModel.rootAssembly
booSketch=VerModel.ConstrainedSketch(name='BSmall', sheetSize=20.0)
if shape==1:
vert1x=0.
vert1y=0.
vert2x=rad*num_high
vert2y=0.
vert3x=rad*num_high
vert3y=rad*num_wide
vert4x=0.
vert4y=rad*num_wide
edepth=extrude_depth*num_thick
if shape==2:
yheight=sin(radians(30.))
xheight=cos(radians(30.))
vert1x=0.
vert1y=rad*yheight+rad/2.
vert2x=rad*xheight*(float(num_high)-1.)*2.
vert2y=rad*yheight+rad/2.
vert3x=rad*xheight*(float(num_high)-1.)*2.
vert3y=rad*yheight+rad/2.+(float(num_wide)-1.)*(rad+rad*yheight)
vert4x=0.
vert4y=rad*yheight+rad/2.+(float(num_wide)-1.)*(rad+rad*yheight)
edepth=extrude_depth*num_thick
if shape==3:
vert1x=0.
vert1y=rad
vert2x=sqrt(2.)*rad*(2.*float(num_high)-1.)
vert2y=rad
vert3x=sqrt(2.)*rad*(2.*float(num_high)-1.)
vert3y=rad*(2.*float(num_wide)-1.)
vert4x=0.
vert4y=rad*(2.*float(num_wide)-1.)
edepth=sqrt(2.)*rad*(2.*float(num_thick)-1.)
if shape==4:
vert1x=0.
vert1y=0.
vert2x=scalex
vert2y=0.
vert3x=scalex
vert3y=scaley
vert4x=0.
vert4y=scaley
if dimension==2:
edepth=extrude_depth
else:
edepth=scalez
booSketch.Line(point1=(vert1x,vert1y), point2=(vert2x, vert2y))
booSketch.Line(point1=(vert2x, vert2y), point2=(vert3x, vert3y))
booSketch.Line(point1=(vert3x, vert3y), point2=(vert4x, vert4y))
booSketch.Line(point1=(vert4x, vert4y), point2=(vert1x, vert1y))
if part_type==3:
booPart=VerModel.Part(name='BSmall', dimensionality=THREE_D,type=DEFORMABLE_BODY)
booPart.BaseSolidExtrude(sketch=booSketch, depth=edepth)
else:
booPart=VerModel.Part(name='BSmall', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
booPart.BaseShell(sketch=booSketch)
booSketchB=VerModel.ConstrainedSketch(name='BBig', sheetSize=20.0)
booSketchB.Line(point1=(vert1x-10.,vert1y-10.), point2=(vert2x+10., vert2y-10.))
booSketchB.Line(point1=(vert2x+10., vert2y-10.), point2=(vert3x+10., vert3y+10.))
booSketchB.Line(point1=(vert3x+10., vert3y+10.), point2=(vert4x-10., vert4y+10.))
booSketchB.Line(point1=(vert4x-10., vert4y+10.), point2=(vert1x-10., vert1y-10.))
if part_type==3:
booPartb=VerModel.Part(name='BBig', dimensionality=THREE_D,type=DEFORMABLE_BODY)
booPartb.BaseSolidExtrude(sketch=booSketchB, depth=edepth*10.)
else:
booPartb=VerModel.Part(name='BBig', dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)
booPartb.BaseShell(sketch=booSketchB)
VerAssembly.Instance(name='BSmall',part=booPart, dependent=ON)
VerAssembly.Instance(name='BBig',part=booPartb, dependent=ON)
if shape==3:
if part_type==3:
VerAssembly.translate(instanceList=('BSmall', ),
vector=(0.,0.,-sqrt(2.)*rad))
VerAssembly.translate(instanceList=('BBig', ),
vector=(0.,0.,-sqrt(2.)*rad*5.))
if shape==4:
if part_type==3:
VerAssembly.translate(instanceList=('BBig', ),
vector=(0.,0.,-edepth*5.))
VerAssembly.InstanceFromBooleanCut(name='Template',
instanceToBeCut=VerAssembly.instances['BBig'],
cuttingInstances=(VerAssembly.instances['BSmall'], ),
originalInstances=DELETE)
# Pattern base parts for multilpe grains
#
def PatternParts(num_high,num_wide,num_thick,VerPart,rad,shape,VerModel):
from abaqusConstants import *
from abaqus import *
VerAssembly=VerModel.rootAssembly
yheight=sin(radians(30.))
xheight=cos(radians(30.))
icount=0
for i in range(0,num_high):
for j in range(0,num_wide):
for k in range(0,num_thick):
label='Part'+str(icount)
VerAssembly.Instance(name=label,part=VerPart, dependent=ON)
# Square
if shape==1:
VerAssembly.translate(instanceList=(label, ),
vector=(i*rad,j*rad,k*rad))
# Hexagon
if shape==2:
if j%2==0:
VerAssembly.translate(instanceList=(label, ),
vector=(i*xheight*rad*2.,j*rad*(1.+yheight),k*rad))
else:
VerAssembly.translate(instanceList=(label, ),
vector=(i*xheight*rad*2.+xheight*rad,j*rad*(1.+yheight),k*rad))
# Dodecahedron
if shape==3:
if j%2==0:
VerAssembly.translate(instanceList=(label, ),
vector=(i*rad*2.*sqrt(2.),j*2.*rad,2.*k*rad*sqrt(2.)))
else:
VerAssembly.translate(instanceList=(label, ),
vector=(i*rad*2.*sqrt(2.)+sqrt(2.)*rad,j*2.*rad,2.*k*rad*sqrt(2.)+sqrt(2.)*rad))
icount=icount+1
inst=[]
inst.append([])
for i in range(0,icount):
inst[i]=VerAssembly.instances['Part'+str(i)]
if i<icount-1:
inst.append([])
VerAssembly.InstanceFromBooleanMerge(name='Merged',
instances=inst,originalInstances=DELETE, keepIntersections=ON,domain=GEOMETRY)
# Output vertices and element connectivity for corrosion analysis
#
def VertsConn(VerPart,dimension):
from abaqusConstants import *
from abaqus import *
vertout=open('vertout.dat','w')
vertout.write("%i\n"%(len(VerPart.cells)))
k=1.
for eachcell in VerPart.cells:
print k/float(len(VerPart.cells))
cellElements=eachcell.getElements()
vertout.write("%i\n"%(len(cellElements)))
cellFaces=eachcell.getFaces()
for eachElement in cellElements:
vertout.write("%i\n"%(eachElement.label))
Adj_Elem=eachElement.getAdjacentElements()
vertout.write("%i\n"%(len(Adj_Elem)))
for i in range(0,len(Adj_Elem)):
vertout.write("%i\n"%(Adj_Elem[i].label))
centroidx=0.
centroidy=0.
centroidz=0.
dmin=1000.
for eachNode in eachElement.getNodes():
centroidx=centroidx+eachNode.coordinates[0]
centroidy=centroidy+eachNode.coordinates[1]
centroidz=centroidz+eachNode.coordinates[2]
num_nodes=float(len(eachElement.getNodes()))
centroidx=centroidx/num_nodes
centroidy=centroidy/num_nodes
centroidz=centroidz/num_nodes
for i in range(0,len(cellFaces)):
eachFace=VerPart.faces[cellFaces[i]]
facex=eachFace.pointOn[0][0]
facey=eachFace.pointOn[0][1]
facez=eachFace.pointOn[0][2]
normalx=eachFace.getNormal()[0]
normaly=eachFace.getNormal()[1]
normalz=eachFace.getNormal()[2]
if dimension==2:
if normalx==0.:
if normaly==0.:
if abs(normalz)==1:
continue
else:
if len(Adj_Elem)<6:
if normalx==0.:
if normaly==0.:
if abs(normalz)==1:
continue
dfcx=facex-centroidx
dfcy=facey-centroidy
dfcz=facez-centroidz
distance=abs(dfcx*normalx+dfcy*normaly+dfcz*normalz)
if distance<dmin:
dmin=distance
vertout.write("%18.6f\n"%(dmin))
k=k+1
vertout.close()
# Generate Materials and Sections
#
def MatGen(ana_type,VerPart,VerModel,part_type,meshsize,random_seed):
from abaqusConstants import *
from abaqus import *
import random
if ana_type==2:
VerModel.Material(name='Magnesium')
VerModel.materials['Magnesium'].Density(table=((1e-05, ), ))
VerModel.materials['Magnesium'].Depvar(deleteVar=20, n=30)
VerModel.materials['Magnesium'].UserMaterial(
mechanicalConstants=(44000.0, 0.35, 138.7, 16.0, 165.0,0.5))
if part_type==3:
regions=VerPart.cells
else:
regions=VerPart.faces
VerModel.HomogeneousSolidSection(name='Magnesium',
material='Magnesium', thickness=meshsize)
VerPart.SectionAssignment(region=(regions,),
sectionName='Magnesium', offset=0.0, offsetField='')
else:
labelcount=1
if part_type==3:
regions=VerPart.cells
else:
regions=VerPart.faces
random.seed(random_seed)
for eachregion in regions:
rand1=(random.random()-0.5)*2.
rand2=(random.random()-0.5)*2.
rand3=(random.random()-0.5)*2.
rand4=(random.random()-0.5)*2.
rand5=(random.random()-0.5)*2.
rand6=(rand1*rand4+rand2*rand5)/(-rand3)
mlabel='Mat'+str(labelcount)
VerModel.Material(name=mlabel)
VerModel.materials[mlabel].Density(table=((1e-05, ), ))
VerModel.materials[mlabel].Depvar(deleteVar=124, n=124)
VerModel.materials[mlabel].UserMaterial(
mechanicalConstants=(200000.0, 0.3,
rand1, rand2, rand3,1.,0.,0.,rand4,rand5,rand6,0.,0.,1.,
10.,0.001,541.5,109.5,60.8,1.,1.,0.5,1.))
VerModel.HomogeneousSolidSection(name=mlabel,
material=mlabel, thickness=meshsize)
VerPart.SectionAssignment(region=(eachregion,),
sectionName=mlabel, offset=0.0, offsetField='')
labelcount=labelcount+1
# Shape 1 BCs and Constraints - Uniaxial Tension
#
def S1BCs(iNodes,VerModel,num_high,num_wide,num_thick,shape,
dimension,extrude_depth,rad,scalex,scaley,scalez):
from abaqusConstants import *
from abaqus import *
import regionToolset
VerAssembly=VerModel.rootAssembly
Min=-0.001
Max=0.001
fwide=float(num_wide)
fhigh=float(num_high)
fthick=float(num_thick)
if shape==1:
# BC LEFT
XMnBL=Min
XMxBL=Max
YMnBL=Min
YMxBL=fwide*rad+Max
ZMnBL=Min
ZMxBL=Max+extrude_depth
# BC BACK
XMnBBK=Min
XMxBBK=fhigh*rad+Max
YMnBBK=Min
YMxBBK=fwide*rad+Max
ZMnBBK=Min
ZMxBBK=Max
# BC Bottom
XMnBBT=Min
XMxBBT=fhigh*rad+Max
YMnBBT=Min
YMxBBT=Max
ZMnBBT=Min
ZMxBBT=Max+extrude_depth
# BC Right
XMnBR=fhigh*rad+Min
XMxBR=fhigh*rad+Max
YMnBR=Min
YMxBR=fwide*rad+Max
ZMnBR=Min
ZMxBR=Max+extrude_depth
# RP
XRP=fhigh*rad
YRP=fwide*rad*0.5
ZRP=extrude_depth*0.5
if shape==2:
yheight=sin(radians(30.))
xheight=cos(radians(30.))
# BC LEFT
XMnBL=Min
XMxBL=Max
YMnBL=rad*yheight+rad/2.+Min
YMxBL=rad*yheight+rad/2.+(fwide-1.)*(rad+rad*yheight)+Max
ZMnBL=Min
ZMxBL=Max+extrude_depth
# BC BACK
XMnBBK=Min
XMxBBK=rad*xheight*(fhigh-1.)*2.+Max
YMnBBK=rad*yheight+rad/2.+Min
YMxBBK=rad*yheight+rad/2.+(fwide-1.)*(rad+rad*yheight)+Max
ZMnBBK=Min
ZMxBBK=Max
# BC Bottom
XMnBBT=Min
XMxBBT=rad*xheight*(fhigh-1.)*2.+Max
YMnBBT=rad*yheight+rad/2.+Min
YMxBBT=rad*yheight+rad/2.+Max
ZMnBBT=Min
ZMxBBT=Max+extrude_depth
# BC Right
XMnBR=rad*xheight*(fhigh-1.)*2.+Min
XMxBR=rad*xheight*(fhigh-1.)*2.+Max
YMnBR=rad*yheight+rad/2.+Min
YMxBR=rad*yheight+rad/2.+(fwide-1.)*(rad+rad*yheight)+Max
ZMnBR=Min
ZMxBR=Max+extrude_depth
# RP
XRP=rad*xheight*(fhigh-1.)*2.
YRP=rad*yheight+rad/2.+(fwide-1.)*(rad+rad*yheight)*0.5
ZRP=extrude_depth*0.5
if shape==4:
# BC LEFT
XMnBL=Min
XMxBL=Max
YMnBL=Min
YMxBL=scaley+Max
ZMnBL=Min
ZMxBL=Max+extrude_depth
# BC BACK
XMnBBK=Min
XMxBBK=scalex+Max
YMnBBK=Min
YMxBBK=scaley+Max
ZMnBBK=Min
ZMxBBK=Max
# BC Bottom
XMnBBT=Min
XMxBBT=scalex+Max
YMnBBT=Min
YMxBBT=Max
ZMnBBT=Min
ZMxBBT=Max+extrude_depth
# BC Right
XMnBR=scalex+Min
XMxBR=scalex+Max
YMnBR=Min
YMxBR=scaley+Max
ZMnBR=Min
ZMxBR=Max+extrude_depth
# RP
XRP=scalex
YRP=scaley*0.5
ZRP=extrude_depth*0.5
#
total_length=(XMxBR-Max)-(XMnBL-Min)
BLeft=iNodes.getByBoundingBox(xMin=XMnBL,xMax=XMxBL,yMin=YMnBL,yMax=YMxBL,zMin=ZMnBL,zMax=ZMxBL)
BBack=iNodes.getByBoundingBox(xMin=XMnBBK,xMax=XMxBBK,yMin=YMnBBK,yMax=YMxBBK,zMin=ZMnBBK,zMax=ZMxBBK)
BBot=iNodes.getByBoundingBox(xMin=XMnBBT,xMax=XMxBBT,yMin=YMnBBT,yMax=YMxBBT,zMin=ZMnBBT,zMax=ZMxBBT)
BRight=iNodes.getByBoundingBox(xMin=XMnBR,xMax=XMxBR,yMin=YMnBR,yMax=YMxBR,zMin=ZMnBR,zMax=ZMxBR)
Ref1=VerAssembly.ReferencePoint(point=(XRP,YRP,ZRP))
#
BLregion=regionToolset.Region(nodes=BLeft)
BBregion=regionToolset.Region(nodes=BBot)
BBKregion=regionToolset.Region(nodes=BBack)
BRregion=regionToolset.Region(nodes=BRight)
VerModel.DisplacementBC(name='LeftX', createStepName='Initial',
region=BLregion, u1=0.0, u2=UNSET, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BottomY', createStepName='Initial',
region=BBregion, u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
VerModel.DisplacementBC(name='BackZ', createStepName='Initial',
region=BBKregion, u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM)
#
id1=VerAssembly.features['RP-1'].id
RPoint=regionToolset.Region(referencePoints=(VerAssembly.referencePoints[id1],))
VerAssembly.Set(referencePoints=(VerAssembly.referencePoints[id1],), name='RPoint')
VerAssembly.Set(nodes=BRight, name='BRight')
VerModel.Equation(name='Constraint-1', terms=((1.0, 'BRight', 1), ( -1.0, 'RPoint', 1)))
VerModel.SmoothStepAmplitude(name='Load', timeSpan=STEP, data=((0.0, 0.0), (1.0, 1.0)))
VerModel.DisplacementBC(name='RPNode', createStepName='Load',
region=RPoint, u1=total_length*0.17, u2=0., u3=UNSET, ur1=UNSET, ur2=UNSET,
ur3=UNSET, amplitude='Load', fixed=OFF, distributionType=UNIFORM)

View file

@ -0,0 +1,110 @@
! Crystal Plasticity Input File Generator for Abaqus Standard
!
! 5/7/00 - Only valid for FCC structure
! Only Asaro hardening model implemented
! Only valid for isotropic elastic properties
! Latent hardening parameters (Q1, Q2) set to (1, 0)
! 30/08/11 - Modified by JGROGAN. Removed some seldom used choices
! and added new random generator due to potential
! problems with previous 'RANDU' type generator.(igen)
! Added gen plane strain option (igps)
!
! Use odd number as seed for random number generator
!
! NLGEOM flag automatically assumed
! Newton-raphson iteration scheme and default parameters inputted
!
! ******************************************************************
program matgen
integer ncrys,iseed
character(1) filename
character(len=256)input2(2)
integer seed(1)
real*8 E,mu,g0,ginf,h0,adot,n,thick
! ******************************************************************
ncrys=2000
nfiles=5
thick=0.1
E=193000.
mu=0.3
g0=140.
ginf=800.
h0=150.
adot=0.0106
n=50.
! iseed=22828385 !ori1
! iseed=5835828 !ori2
! iseed=369256 !ori3
! iseed=39935222 !ori4
! iseed=787678764 !ori5
! iseed=987565 !ori6
iseed=75336563 !ori7
! iseed=367222567 !ori8
! iseed=682268 !ori9
! iseed=68768553 !ori10
seed=iseed
call random_seed(put=seed)
igen=2
istan=0
igps=0
do i=1,nfiles
write(filename,'(i1)')i
open(unit=11,status='unknown',file='Tens500_100.inp')
open(unit=10,status='unknown',file='Tens500_100_'//trim(filename)//'.inp')
input2(1)='**'
do while (index(input2(1),'*End Assembly')==0)
read(11,'(a)')input2(2)
write(10,'(a)')input2(1)
input2(1)=input2(2)
enddo
write(10,'(a)')'*End Assembly'
! ******************************************************************
do icrys=1,ncrys
write(10,'(a)') '**'
write(10,'(a,i5)')'*MATERIAL, NAME=MAT',icrys
write(10,'(a)')'**'
write(10,'(a)')'*USER MATERIAL, CONSTANTS=160, UNSYMM'
write(10,'(f16.4,a,f6.4,a)')E,',',mu,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')1.,','
write(10,'(6(f6.4,a))')1.,',',1.,',',1.,',',1.,',',1.,',',0.,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')0.,','
call random_number(rand1)
rand1=(rand1-0.5)*2.
call random_number(rand2)
rand2=(rand2-0.5)*2.
call random_number(rand3)
rand3=(rand3-0.5)*2.
call random_number(rand4)
rand4=(rand4-0.5)*2.
call random_number(rand5)
rand5=(rand5-0.5)*2.
write(10,'(3(f12.6,a),3(f6.4,a))')rand1,',',rand2,',',rand3,',',1.,',',0.,',',0.
rand6 = (rand1*rand4+rand2*rand5)/(-rand3)
write(10,'(3(f12.6,a),3(f6.4,a))')rand4,',',rand5,',',rand6,',',0.,',',0.,',',1.
write(10,'(2(f12.4,a))') n,',',adot,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(3(f12.4,a))') h0,',',ginf,',',g0,','
write(10,'(2(f6.4,a))') 1.,',',0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(2(f6.4,a))') 0.5,',',1.,','
write(10,'(2(f12.4,a))') 1.,',',10.,',1.e-5,'
write(10,'(a)') '*Depvar'
write(10,'(a)') '113'
write(10,'(a)') '**'
enddo
ierr=0
do while (ierr==0)
read(11,'(a)',iostat=ierr)input2(1)
if(ierr==0)write(10,'(a)')input2(1)
enddo
close(unit=10)
close(unit=11)
enddo
end program matgen

View file

@ -0,0 +1,90 @@
! Crystal Plasticity Input File Generator for Abaqus Standard
!
! 5/7/00 - Only valid for FCC structure
! Only Asaro hardening model implemented
! Only valid for isotropic elastic properties
! Latent hardening parameters (Q1, Q2) set to (1, 0)
! 30/08/11 - Modified by JGROGAN. Removed some seldom used choices
! and added new random generator due to potential
! problems with previous 'RANDU' type generator.(igen)
! Added gen plane strain option (igps)
!
! Use odd number as seed for random number generator
!
! NLGEOM flag automatically assumed
! Newton-raphson iteration scheme and default parameters inputted
!
! ******************************************************************
program matgen
integer ncrys,iseed
character(1) filename
character(len=256)input2(2)
integer seed(1)
real*8 E,mu,g0,ginf,h0,adot,n,thick
! ******************************************************************
ncrys=300
nfiles=5
thick=0.1
E=193000.
mu=0.3
g0=150.
ginf=360.
h0=380.
adot=0.0106
n=50.
iseed=830963 !ori1
iseed=211327 !ori2
iseed=312099 !ori3
iseed=98247 !ori4
iseed=446725 !ori5
iseed=504991 !ori6
iseed=493487 !ori7
iseed=902013 !ori8
iseed=363209 !ori9
iseed=418743 !ori10
iseed=647832 !ori11
iseed=921647832 !ori12
seed=iseed
call random_seed(put=seed)
igen=2
istan=0
igps=0
do i=1,nfiles
write(filename,'(i1)')i
open(unit=11,status='unknown',file='W1L80ST.inp')
open(unit=10,status='unknown',file='W1L80STP_'//trim(filename)//'.inp')
input2(1)='**'
do while (index(input2(1),'*End Assembly')==0)
read(11,'(a)')input2(2)
write(10,'(a)')input2(1)
input2(1)=input2(2)
enddo
write(10,'(a)')'*End Assembly'
! ******************************************************************
do icrys=1,ncrys
write(10,'(a)') '**'
write(10,'(a,i5)')'*MATERIAL, NAME=MAT',icrys
write(10,'(a)')'**'
write(10,'(a)')'*elastic'
write(10,'(f16.4,a,f6.4)')E,',',mu
call random_number(rand1)
rh=800.
if (rand1<0.1)rh=500.
write(10,'(a)')'*plastic'
stran=0.
do j=1,50
stress=350.+(rh-350.)*tanh(abs(1200.*stran/(rh-350.)))
write(10,'(f16.4,a,f6.4)')stress,',',stran
stran=stran+0.01
enddo
write(10,'(a)')'**'
enddo
ierr=0
do while (ierr==0)
read(11,'(a)',iostat=ierr)input2(1)
if(ierr==0)write(10,'(a)')input2(1)
enddo
close(unit=10)
close(unit=11)
enddo
end program matgen

View file

@ -0,0 +1,113 @@
! Crystal Plasticity Input File Generator for Abaqus Standard
!
! 5/7/00 - Only valid for FCC structure
! Only Asaro hardening model implemented
! Only valid for isotropic elastic properties
! Latent hardening parameters (Q1, Q2) set to (1, 0)
! 30/08/11 - Modified by JGROGAN. Removed some seldom used choices
! and added new random generator due to potential
! problems with previous 'RANDU' type generator.(igen)
! Added gen plane strain option (igps)
!
! Use odd number as seed for random number generator
!
! NLGEOM flag automatically assumed
! Newton-raphson iteration scheme and default parameters inputted
!
! ******************************************************************
program matgen
integer ncrys,iseed
character(1) filename
character(len=256)input2(2)
integer seed(1)
real*8 E,mu,g0,ginf,h0,adot,n,thick
! ******************************************************************
ncrys=2000
nfiles=5
thick=0.1
E=193000.
mu=0.3
g0=140.
ginf=800.
h0=150.
adot=0.0106
n=50.
! iseed=22828385 !ori1
! iseed=5835828 !ori2
! iseed=369256 !ori3
! iseed=39935222 !ori4
! iseed=787678764 !ori5
! iseed=987565 !ori6
iseed=75336563 !ori7
! iseed=367222567 !ori8
! iseed=682268 !ori9
! iseed=68768553 !ori10
seed=iseed
call random_seed(put=seed)
igen=2
istan=0
igps=0
do i=1,nfiles
write(filename,'(i1)')i
open(unit=11,status='unknown',file='Tens150_400.inp')
open(unit=10,status='unknown',file='Tens150_400_D'//trim(filename)//'.inp')
input2(1)='**'
do while (index(input2(1),'*End Assembly')==0)
read(11,'(a)')input2(2)
write(10,'(a)')input2(1)
input2(1)=input2(2)
enddo
write(10,'(a)')'*End Assembly'
! ******************************************************************
do icrys=1,ncrys
write(10,'(a)') '**'
write(10,'(a,i5)')'*MATERIAL, NAME=MAT',icrys
write(10,'(a)')'**'
write(10,'(a)')'*USER MATERIAL, CONSTANTS=162, UNSYMM'
write(10,'(f16.4,a,f6.4,a)')E,',',mu,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')1.,','
write(10,'(6(f6.4,a))')1.,',',1.,',',1.,',',1.,',',1.,',',0.,','
write(10,'(f6.4,a)')0.,','
write(10,'(f6.4,a)')0.,','
call random_number(rand1)
rand1=(rand1-0.5)*2.
call random_number(rand2)
rand2=(rand2-0.5)*2.
call random_number(rand3)
rand3=(rand3-0.5)*2.
call random_number(rand4)
rand4=(rand4-0.5)*2.
call random_number(rand5)
rand5=(rand5-0.5)*2.
write(10,'(3(f12.6,a),3(f6.4,a))')rand1,',',rand2,',',rand3,',',1.,',',0.,',',0.
rand6 = (rand1*rand4+rand2*rand5)/(-rand3)
write(10,'(3(f12.6,a),3(f6.4,a))')rand4,',',rand5,',',rand6,',',0.,',',0.,',',1.
write(10,'(2(f12.4,a))') n,',',adot,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(3(f12.4,a))') h0,',',ginf,',',g0,','
write(10,'(2(f6.4,a))') 1.,',',0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(f6.4,a)') 0.,','
write(10,'(2(f6.4,a))') 0.5,',',1.,','
write(10,'(2(f12.4,a))') 1.,',',10.,',1.e-5,'
write(10,'(2(f6.4,a))') 4.03,',',1.,','
write(10,'(a)') '*Depvar,delete=118'
write(10,'(a)') '128'
write(10,'(a)') '*Density'
write(10,'(a)') '0.8e-05'
write(10,'(a)') '**'
enddo
ierr=0
do while (ierr==0)
read(11,'(a)',iostat=ierr)input2(1)
if(ierr==0)write(10,'(a)')input2(1)
enddo
close(unit=10)
close(unit=11)
enddo
end program matgen

View file

@ -0,0 +1,89 @@
! This program takes output from the QHULL package and converts it into
! a format suitable for use with the GeomGen script
! J.Grogan 05/08/11
program Voronoi2DPost
!
! Parameters
parameter(max_verts=1000000,max_cells=100000,max_verts_in_cell=100)
!
! Variables
character(len=256)full_line,test_string
integer vnum(max_cells,max_verts_in_cell),num_verts(max_cells)
integer in_tol(max_cells)
real xv_cor(max_verts)
real yv_cor(max_verts)
logical xtrue
logical ytrue
!
! Read Scales
open(unit=15,file='scales.dat',status='unknown')
read(15,*)xscale,yscale
!
! Read in vertex co-ordinates
open(unit=11,file='qhullout.dat',status='unknown')
read(11,*)
read(11,*)num_verts_tot,num_cells,dummy
do i=1,num_verts_tot
read(11,*)xv_cor(i),yv_cor(i)
enddo
!
! Read in vertices on each cell
do i=1,num_cells
read(11,*)num_verts(i)
backspace(11)
read(11,'(i2,a256)')idummy,full_line
ileft=1
num_points=1
do iright=1,256
test_string=full_line(iright:iright)
if((test_string==' ').or.(iright==256))then
read(full_line(ileft:iright-1),'(i6)')vnum(i,num_points)
if(num_points==num_verts(i))exit
ileft=iright+1
num_points=num_points+1
endif
enddo
enddo
!
! Check if cells are within specified region
open(unit=12,file='fortranout.dat',status='unknown')
num_inside_cells=num_cells
do i=1,num_cells
icheck=0
do j=1,num_verts(i)
xcor=xv_cor(vnum(i,j)+1)
ycor=yv_cor(vnum(i,j)+1)
if(abs(xcor)==10.101)then
icheck=0
exit
endif
rmax_x=1.1*xscale
rmax_y=1.1*yscale
rmin=-0.1
xtrue=(xcor<rmax_x).and.(xcor>rmin)
ytrue=(ycor<rmax_y).and.(ycor>rmin)
if(xtrue.and.ytrue)icheck=icheck+1
enddo
if(icheck<1)then
in_tol(i)=2
num_inside_cells=num_inside_cells-1
else
in_tol(i)=1
endif
enddo
!
! Write vertex coordinates for each cell
write(12,*)num_inside_cells
do i=1,num_cells
if(in_tol(i)==1)then
write(12,*)num_verts(i)
do j=1,num_verts(i)
write(12,*)xv_cor(vnum(i,j)+1),',',yv_cor(vnum(i,j)+1)
enddo
else
cycle
endif
enddo
close(unit=11)
close(unit=12)
end program

View file

@ -0,0 +1,157 @@
! This program takes output from the QHULL package and converts it into
! a format suitable for use with the GeomGen script
! J.Grogan 05/08/11
program Voronoi3DPost
!
! Parameters
parameter(max_verts=500000,max_cells=50000,max_verts_in_cell=100)
parameter(max_hyps=500000,max_hyp_in_cell=100,max_verts_on_hyp=50)
!
! Variables
character(len=256)full_line,test_string
integer num_verts(max_cells)
integer vert_list(max_cells,max_verts_in_cell)
integer facet(2,max_hyps)
integer hyp_list(max_cells,max_hyp_in_cell)
integer num_cell_hyp(max_cells)
integer cell_status(max_cells)
integer num_hyp_verts(max_cells,max_hyp_in_cell)
integer hyp_vert_list(max_cells,max_hyp_in_cell,max_verts_on_hyp)
double precision xv_cor(max_verts)
double precision yv_cor(max_verts)
double precision zv_cor(max_verts)
double precision cor(3,max_hyps)
double precision offset(max_hyps)
double precision xcor,ycor,zcor
double precision dotrprod,distance,tol
logical xtrue,ytrue,ztrue
!
! Open output files
open(unit=12,file='fortranout.dat',status='unknown')
!
! Open scales file
open(unit=15,file='scales.dat',status='unknown')
read(15,*)rmaxscale
!
! Read tessellation results from QHULL
open(unit=11,file='qhullout.dat',status='unknown')
read(11,*)
read(11,*)num_total_verts,num_cells
!
! Read in all vertice co-ordinates
do i=1,num_total_verts
read(11,*)xv_cor(i),yv_cor(i),zv_cor(i)
enddo
!
! Read in vertice labels for each voronoi cell
do i=1,num_cells
read(11,*)num_verts(i)
backspace(11)
if(num_verts(i)>9)then
read(11,'(i3,a256)')idummy,full_line
else
read(11,'(i2,a256)')idummy,full_line
endif
ileft=1
num_points=1
do iright=1,256
test_string=full_line(iright:iright)
if((test_string==' ').or.(iright==256))then
read(full_line(ileft:iright-1),'(i6)')vert_list(i,num_points)
if(num_points==num_verts(i))exit
ileft=iright+1
num_points=num_points+1
endif
enddo
enddo
!
! Read in bounded hyperplane cell labels and co-ordinates
read(11,*)num_hyp
do i=1,num_hyp
read(11,*)dummy,facet(1,i),facet(2,i),cor(1,i),cor(2,i),cor(3,i),offset(i)
enddo
!
! Determine hyperplanes of each cell
do i=1,num_cells
num_hy=1
do j=1,num_hyp
if((facet(1,j)==i-1).or.(facet(2,j)==i-1))then
hyp_list(i,num_hy)=j
num_cell_hyp(i)=num_hy
num_hy=num_hy+1
endif
enddo
enddo
!
! Check if any cell vertices are outside the chosen tolerance
do i=1,num_cells
cell_status(i)=1
if(num_verts(i)<3)cycle
ibreak=0
do j=1,num_verts(i)
do k=1,num_verts(i)
if(j==k)cycle
x1=xv_cor(vert_list(i,j)+1)
y1=yv_cor(vert_list(i,j)+1)
z1=zv_cor(vert_list(i,j)+1)
x2=xv_cor(vert_list(i,k)+1)
y2=yv_cor(vert_list(i,k)+1)
z2=zv_cor(vert_list(i,k)+1)
dist=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)+(z2-z1)*(z2-z1))
if (dist<1.e-5)ibreak=1
enddo
enddo
if(ibreak==1)cycle
do j=1,num_verts(i)
xcor=xv_cor(vert_list(i,j)+1)
ycor=yv_cor(vert_list(i,j)+1)
zcor=zv_cor(vert_list(i,j)+1)
rmax=1.1*rmaxscale
rmin=-0.1
xtrue=(xcor<rmax).and.(xcor>rmin)
ytrue=(ycor<rmax).and.(ycor>rmin)
ztrue=(zcor<rmax).and.(zcor>rmin)
if(xtrue.and.ytrue.and.ztrue)cell_status(i)=0
enddo
enddo
!
! For all cells within tolerance determine vertices on each hyperplane
num_skipped=0
tol=1.e-5*rmaxscale
do i=1,num_cells
if(cell_status(i)/=0)then
num_skipped=num_skipped+1
cycle
endif
do j=1,num_cell_hyp(i)
nverts_on_hyp=1
do k=1,num_verts(i)
dotprod1=cor(1,hyp_list(i,j))*xv_cor(vert_list(i,k)+1)
dotprod2=cor(2,hyp_list(i,j))*yv_cor(vert_list(i,k)+1)
dotprod3=cor(3,hyp_list(i,j))*zv_cor(vert_list(i,k)+1)
distance=dotprod1+dotprod2+dotprod3+offset(hyp_list(i,j))
if(abs(distance)<tol)then
hyp_vert_list(i,j,nverts_on_hyp)=vert_list(i,k)
num_hyp_verts(i,j)=nverts_on_hyp
nverts_on_hyp=nverts_on_hyp+1
endif
enddo
enddo
enddo
! Write output for the of co-orindates of vertices on each hyperplane
! that make up a cell.
write(12,*)num_cells-num_skipped
do i=1,num_cells
if(cell_status(i)/=0)cycle
write(12,*)num_cell_hyp(i)
do j=1,num_cell_hyp(i)
write(12,*)num_hyp_verts(i,j)
do k=1,num_hyp_verts(i,j)
xcor=xv_cor(hyp_vert_list(i,j,k)+1)
ycor=yv_cor(hyp_vert_list(i,j,k)+1)
zcor=zv_cor(hyp_vert_list(i,j,k)+1)
write(12,'(2(f20.15,a),f20.15)')xcor,',',ycor,',',zcor
enddo
enddo
enddo
end program

View file

@ -0,0 +1,103 @@
from abaqusConstants import *
from abaqus import *
import regionToolset
import sys
import random
import os
import subprocess
aModel=mdb.models['Model-1']
aPart=aModel.parts['Part-1']
num_grains=5
sizeX=1.
sizeY=1.
sizeZ=1.
random.seed(1111)
qhullin=open('qhullin.dat','w')
qhullin.write("%i \n"%(3))
qhullin.write("%i \n"%(num_grains*27))
for i in range(0,num_grains):
xcor=random.random()*sizeX
ycor=random.random()*sizeY
zcor=random.random()*sizeZ
maxX=-sizeX
maxY=-sizeY
maxZ=-sizeZ
for j in range(0,3):
for k in range(0,3):
for m in range(0,3):
qhullin.write("%18.6f %18.6f %18.6f \n"%(xcor+maxX,ycor+maxY,zcor+maxZ))
maxZ=maxZ+sizeZ
maxY=maxY+sizeY
maxZ=-sizeZ
maxX=maxX+sizeX
maxY=-sizeY
qhullin.close()
retcode=subprocess.call("qvoronoi.exe TI qhullin.dat Fi Fn o TO qhullout.dat")
HullFile=open('qhullout.dat')
# Read Hyperplane Data
numPlanes=int(HullFile.readline())
hyps=[]
vhyp=[]
for i in range(0,numPlanes):
hyps.append([])
vhyp.append([])
for i in range(0,numPlanes):
coords=HullFile.readline().split(' ')
cell1=int(coords[0])
cell2=int(coords[1])
crd=[]
for j in range(3,len(coords)-1):
if coords[j]!='':
crd.append(float(coords[j]))
hyps[cell1].append([crd[0],crd[1],crd[2],crd[3]])
hyps[cell2].append([crd[0],crd[1],crd[2],crd[3]])
# Read Vertex Neighbour Data
numVerts=int(HullFile.readline())
vNbr=[]
vCrd=[]
for i in range(0,numVerts+1):
vNbr.append([])
vCrd.append([])
for i in range(0,numVerts):
vNbr[i].append(HullFile.readline().split(' '))
numVerts=int(HullFile.readline())
dat1=HullFile.readline().split(' ')
numVerts=int(dat1[0])
numCells=int(dat1[1])
# Read Vertex Coord Data
for i in range(0,numVerts):
vCrd[i].append(HullFile.readline().split(' '))
# Read Cell Vertex Data
vCell=[]
for i in range(0,numCells):
vCell.append([])
for i in range(0,numCells):
vCell[i].append(HullFile.readline().split(' '))
# Find Vertices on Each Hyperplane on Each Cell
for i in range(0,numCells):
for j in range(0,len(hyps[i])):
nx=hyps[i][j][0]
ny=hyps[i][j][1]
nz=hyps[i][j][2]
off=hyps[i][j][3]
vhyp=[]
for k in range(0,int(vCell[i][0][0])):
index=int(vCell[i][0][k])
vx=float(vCrd[index][0][0])
vy=float(vCrd[index][0][1])
vz=float(vCrd[index][0][2])
distance=nx*vx+ny*vy+nz*vz+off
if abs(distance)<1.e-4:
vhyp.append(index)
for k in range(0,len(vhyp)):
for m in range(0,len(vhyp)):
if k!=m:
ax=float(vCrd[vhyp[k]][0][0])
ay=float(vCrd[vhyp[k]][0][1])
az=float(vCrd[vhyp[k]][0][2])
bx=float(vCrd[vhyp[m]][0][0])
by=float(vCrd[vhyp[m]][0][1])
bz=float(vCrd[vhyp[m]][0][2])
aPart.WirePolyLine(points=((ax,ay,az),(bx,by,bz)),mergeWire=OFF)
HullFile.close()