Add scripts and inp files.
This commit is contained in:
parent
ad937f2602
commit
e19f869a1e
390 changed files with 6580687 additions and 10 deletions
202
Unpublished/XFEM2/Full2D/2D_XCor.for
Normal file
202
Unpublished/XFEM2/Full2D/2D_XCor.for
Normal file
|
@ -0,0 +1,202 @@
|
|||
c 2D XFEM Corrosion Element
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,props,
|
||||
1 nprops,coords,mcrd,nnode,u,du,v,a,jtype,time,dtime,kstep,kinc,
|
||||
2 jelem,params,ndload,jdltyp,adlmag,predef,npredf,lflags,
|
||||
3 mlvarx,ddlmag,mdload,pnewdt,jprops,njprop,period)
|
||||
c
|
||||
include 'aba_param.inc'
|
||||
c
|
||||
dimension rhs(mlvarx,*),amatrx(ndofel,ndofel),svars(nsvars),
|
||||
1 energy(8),props(*),coords(mcrd,nnode),
|
||||
2 u(ndofel),du(mlvarx,*),v(ndofel),a(ndofel),time(2),
|
||||
3 params(3),jdltyp(mdload,*),adlmag(mdload,*),
|
||||
4 ddlmag(mdload,*),predef(2,npredf,nnode),lflags(*),jprops(*)
|
||||
c
|
||||
dimension phig(8),phih(8),phi(8),phix(8),phiy(8)
|
||||
dimension crdnx(4),crdny(4),w(8),dndg(4),dndh(4)
|
||||
dimension theta(4),rjac(2,2),rjaci(2,2)
|
||||
c
|
||||
parameter(zero=0.d0,one=1.d0)
|
||||
c material property definition
|
||||
thick = 1.
|
||||
rho = 1.
|
||||
beta=40.
|
||||
vel=0.0
|
||||
dpos=0.25+vel*time(2)
|
||||
c initialization (nrhs=1)
|
||||
do k1=1,ndofel
|
||||
rhs(k1,nrhs)=zero
|
||||
do k2=1,ndofel
|
||||
amatrx(k2,k1)=zero
|
||||
enddo
|
||||
enddo
|
||||
if (lflags(1).eq.33) then
|
||||
do icrd=1,4
|
||||
crdnx(icrd)=coords(1,icrd)
|
||||
crdny(icrd)=coords(2,icrd)
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*
|
||||
1 sign(1.,crdnx(icrd)-dpos)
|
||||
enddo
|
||||
if sign(1.,theta(1))/=sign(1.,theta(2))then
|
||||
c Enriched
|
||||
ienr=8
|
||||
elen=abs(crdnx(2)-crdnx(1))
|
||||
frac=abs(dpos-crdnx(1))/elen
|
||||
rlen1=2.*frac
|
||||
rlen2=2.*(1.-frac)
|
||||
rmid1=-1+rlen1/2.
|
||||
rmid2=1-rlen2/2.
|
||||
gx(1)=rmid1-(rlen1/2.)/sqrt(3.)
|
||||
gx(2)=rmid1+(rlen1/2.)/sqrt(3.)
|
||||
gx(3)=rmid1+(rlen1/2.)/sqrt(3.)
|
||||
gx(4)=rmid1-(rlen1/2.)/sqrt(3.)
|
||||
gx(5)=rmid2-(rlen2/2.)/sqrt(3.)
|
||||
gx(6)=rmid2+(rlen2/2.)/sqrt(3.)
|
||||
gx(7)=rmid2+(rlen2/2.)/sqrt(3.)
|
||||
gx(8)=rmid2-(rlen2/2.)/sqrt(3.)
|
||||
gpos=1/sqrt(3.)
|
||||
hx(1)=-gpos
|
||||
hx(2)=-gpos
|
||||
hx(3)=+gpos
|
||||
hx(4)=+gpos
|
||||
hx(5)=-gpos
|
||||
hx(6)=-gpos
|
||||
hx(7)=+gpos
|
||||
hx(8)=+gpos
|
||||
do iw=1,4
|
||||
w(iw)=frac/2.;
|
||||
w(iw+4)=(1.-frac)/2.;
|
||||
enddo
|
||||
else
|
||||
c Normal Shp Funs
|
||||
ienr=4
|
||||
gpos=1./sqrt(3.)
|
||||
gx(1)=-gpos
|
||||
gx(2)=gpos
|
||||
gx(3)=gpos
|
||||
gx(4)=-gpos
|
||||
hx(1)=-gpos
|
||||
hx(2)=-gpos
|
||||
hx(3)=gpos
|
||||
hx(4)=gpos
|
||||
do iw=1,4
|
||||
w(iw)=1.
|
||||
enddo
|
||||
endif
|
||||
c assemble amatrx and rhs
|
||||
do k=1,ienr
|
||||
c loop through gauss pts
|
||||
g=gx(k)
|
||||
h=hx(k)
|
||||
phi(1)=0.25*(1.-g)*(1.-h)
|
||||
phi(3)=0.25*(1.+g)*(1.-h)
|
||||
phi(5)=0.25*(1.+g)*(1.+h)
|
||||
phi(7)=0.25*(1.-g)*(1.+h)
|
||||
riLS=theta(1)*phi(1)+theta(2)*phi(3)+
|
||||
1 theta(3)*phi(5)+theta(4)*phi(7)
|
||||
if (riLS<0.)then
|
||||
cond=0.
|
||||
spec=0.01
|
||||
else
|
||||
cond=1.
|
||||
spec=1.
|
||||
endif
|
||||
do iter=1,4
|
||||
phi(2*iter)=phi(2*iter-1)*
|
||||
1 (abs(riLS)-abs(theta(iter)))
|
||||
enddo
|
||||
phig(1)=0.25*-(1.-h)
|
||||
phig(3)=0.25*(1.-h)
|
||||
phig(5)=0.25*(1.+h)
|
||||
phig(7)=0.25*-(1.+h)
|
||||
phih(1)=0.25*-(1.-g)
|
||||
phih(3)=0.25*-(1.+g)
|
||||
phih(5)=0.25*(1.+g)
|
||||
phih(7)=0.25*(1.-g)
|
||||
diLSg=sign(1.,iLS)*(phig(1)*theta(1)+phig(3)*
|
||||
1 theta(2)+phig(5)*theta(3)+phig(7)*theta(4))
|
||||
diLSh=sign(1.,iLS)*(phih(1)*theta(1)+phih(3)*
|
||||
1 theta(2)+phih(5)*theta(3)+phih(7)*theta(4))
|
||||
do iter=1,4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-
|
||||
1 abs(theta(iter)))+phi(2*iter-1)*diLSg
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-
|
||||
1 abs(theta(iter)))+phi(2*iter-1)*diLSh
|
||||
enddo
|
||||
rjac=0.
|
||||
do iter=1,4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter)
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter)
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter)
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter)
|
||||
enddo
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1)
|
||||
rjaci(1,1)= rjac(2,2)/djac
|
||||
rjaci(2,2)= rjac(1,1)/djac
|
||||
rjaci(1,2)=-rjac(1,2)/djac
|
||||
rjaci(2,1)=-rjac(2,1)/djac
|
||||
do iter=1,8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter)
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter)
|
||||
enddo
|
||||
dtdx=zero
|
||||
dtdy=zero
|
||||
t =zero
|
||||
told=zero
|
||||
do i=1,8
|
||||
dtdx=u(i)*phix(i)+dtdx
|
||||
dtdy=u(i)*phiy(i)+dtdy
|
||||
t=u(i)*phi(i)+t
|
||||
told=(u(i)-du(i,nrhs))*phi(i)+told
|
||||
end do
|
||||
dtdt=(t-told)/dtime
|
||||
we=w(k)*djac
|
||||
do ki=1,8
|
||||
c loop over nodes
|
||||
rhs(ki,nrhs) = rhs(ki,nrhs) -
|
||||
1 we*(phi(ki)*rho*spec*dtdt +
|
||||
2 cond*(phix(ki)*dtdx + phiy(ki)*dtdy))
|
||||
do kj=1,8
|
||||
amatrx(ki,kj)= amatrx(ki,kj) +
|
||||
1 we*(phi(ki)*phi(kj)*rho*spec/dtime +
|
||||
1 cond*(phix(ki)*phix(kj)+phiy(ki)*phiy(kj)))
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
c if interface is in the element a penalty term is needed
|
||||
if(enr==4)then
|
||||
xi=point
|
||||
gm(1)=(1.-xi)/2.
|
||||
gm(3)=(1.+xi)/2.
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3)
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)))
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)))
|
||||
term2=gm(1)*u(1)+gm(2)*u(2)+gm(3)*u(3)+gm(4)*u(4)
|
||||
diff=abs(term2-1.)
|
||||
c add penalty flux/force: BGtc
|
||||
targetT=1.
|
||||
do i=1,4
|
||||
rhs(i,nrhs)=rhs(i,nrhs)+beta*gm(i)*diff
|
||||
enddo
|
||||
c find GtG
|
||||
gm2=0.
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
gm2(i,j)=gm(i)*gm(j)
|
||||
enddo
|
||||
enddo
|
||||
c add penalty stiffness
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
amatrx(i,j)=amatrx(i,j)+beta*gm2(i,j)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
return
|
||||
end
|
78
Unpublished/XFEM2/Full2D/AbInp.inp
Normal file
78
Unpublished/XFEM2/Full2D/AbInp.inp
Normal file
|
@ -0,0 +1,78 @@
|
|||
*Heading
|
||||
** Job name: Job-1 Model name: Model-1
|
||||
** Generated by: Abaqus/CAE 6.12-1
|
||||
*Preprint, echo=NO, model=NO, history=NO, contact=NO
|
||||
**
|
||||
** PARTS
|
||||
**
|
||||
*Part, name=Part-1
|
||||
*Node
|
||||
1, 0., 0., 0.
|
||||
2, 1., 0., 0.
|
||||
3, 1., 1., 0.
|
||||
4, 0., 1., 0.
|
||||
5, 1., 2., 0.
|
||||
6, 0., 2., 0.
|
||||
*USER ELEMENT,NODES=4,TYPE=U1,PROP=1,COORDINATES=2,VAR=2,unsymm
|
||||
11,
|
||||
*Element, type=U1,ELSET=UEL
|
||||
1, 1, 2,3,4
|
||||
2, 4, 3,5,6
|
||||
*UEL Property, Elset=UEL
|
||||
1.
|
||||
*End Part
|
||||
**
|
||||
**
|
||||
** ASSEMBLY
|
||||
**
|
||||
*Assembly, name=Assembly
|
||||
**
|
||||
*Instance, name=Part-1-1, part=Part-1
|
||||
*End Instance
|
||||
**
|
||||
*Nset, nset=_PickedSet16, internal, instance=Part-1-1
|
||||
1,3,5
|
||||
*Nset, nset=_PickedSet17, internal, instance=Part-1-1
|
||||
2,4,6
|
||||
*Nset, nset=Set-6, instance=Part-1-1
|
||||
1,3,5
|
||||
*End Assembly
|
||||
**
|
||||
** MATERIALS
|
||||
**
|
||||
*Material, name=Material-1
|
||||
*Conductivity
|
||||
1.,
|
||||
*Density
|
||||
1.,
|
||||
*Specific Heat
|
||||
1.,
|
||||
** ----------------------------------------------------------------
|
||||
**
|
||||
** Name: Predefined Field-1 Type: Temperature
|
||||
*Initial Conditions, type=TEMPERATURE
|
||||
_PickedSet16, 1.,0.
|
||||
** Name: Predefined Field-2 Type: Temperature
|
||||
*Initial Conditions, type=TEMPERATURE
|
||||
_PickedSet17, 0.,0.
|
||||
** STEP: Step-1
|
||||
**
|
||||
*Step, name=Step-1
|
||||
*Heat Transfer, end=PERIOD, deltmx=100.
|
||||
0.1, 1., 1e-09, 0.1,
|
||||
**
|
||||
** BOUNDARY CONDITIONS
|
||||
**
|
||||
** Name: BC-1 Type: Temperature
|
||||
*Boundary
|
||||
Set-6, 11, 11, 1.
|
||||
**
|
||||
** OUTPUT REQUESTS
|
||||
**
|
||||
*Restart, write, frequency=0
|
||||
**
|
||||
** FIELD OUTPUT: F-Output-1
|
||||
**
|
||||
*Output, field, variable=PRESELECT
|
||||
*Output, history, frequency=0
|
||||
*End Step
|
331
Unpublished/XFEM2/Full2D/F2DLevelSetFMM.m
Normal file
331
Unpublished/XFEM2/Full2D/F2DLevelSetFMM.m
Normal file
|
@ -0,0 +1,331 @@
|
|||
function [] = F2DLevelSetFMM()
|
||||
clear all
|
||||
% Define Main Solution Mesh
|
||||
NumX=32;
|
||||
NumY=32;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% Define Initial Level Set
|
||||
centx=4.;
|
||||
centy=4.;
|
||||
rad=2.1;
|
||||
for i=1:numNodes;
|
||||
dist=sqrt((Node(i,1)-centx)*(Node(i,1)-centx)+(Node(i,2)-centy)*(Node(i,2)-centy));
|
||||
lSet(i)=dist-rad;
|
||||
end
|
||||
%for i=1:numNodes;
|
||||
% dist=Node(i,1)-0.1;
|
||||
% lSet(i)=dist;
|
||||
%end
|
||||
% Plot initial level set
|
||||
[X Y]=meshgrid(0:0.25:8);
|
||||
Z=zeros(33);
|
||||
for i=1:1089
|
||||
Z(i)=lSet(i);
|
||||
end
|
||||
surf(X,Y,Z)
|
||||
% LS Algorithm Parameters
|
||||
lSet'
|
||||
bandwidth=10;
|
||||
% Loop through timesteps
|
||||
for tstep=1:10
|
||||
% Identify Narrow Band Elements
|
||||
NBElems=0;
|
||||
NBNodes=0;
|
||||
NGlobal=zeros(numNodes);
|
||||
for i=1:numElem
|
||||
check=0;
|
||||
for iNd=1:4
|
||||
if abs(lSet(Element(i,iNd)))<=bandwidth*delX
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
% If an element is in the narrow band split it into triangles
|
||||
if check==1
|
||||
for j=1:4
|
||||
if NGlobal(Element(i,j))==0
|
||||
NBNodes=NBNodes+1;
|
||||
NGlobal(Element(i,j))=NBNodes;
|
||||
NLocal(NBNodes)=Element(i,j);
|
||||
end
|
||||
end
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,2));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,3));
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,3));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,4));
|
||||
end
|
||||
end
|
||||
% Get local Level Set
|
||||
for i=1:NBNodes
|
||||
lSetLocal(i)=lSet(NLocal(i));
|
||||
end
|
||||
% Velocity BC
|
||||
F=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
L1=sign(lSetLocal(NBelem(i,1)));
|
||||
L2=sign(lSetLocal(NBelem(i,2)));
|
||||
L3=sign(lSetLocal(NBelem(i,3)));
|
||||
if L1 ~= L2 || L1 ~= L3
|
||||
F(NBelem(i,1))= 1.;
|
||||
F(NBelem(i,2))= 1.;
|
||||
F(NBelem(i,3))= 1.;
|
||||
end
|
||||
end
|
||||
% Assemble 'Stiffness' Matrices
|
||||
A=zeros(NBNodes);
|
||||
for i=1:NBElems
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
AfL=zeros(3);
|
||||
AfLGLS=zeros(3);
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=2*abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[lSetLocal(NBelem(i,1));lSetLocal(NBelem(i,2));lSetLocal(NBelem(i,3))];
|
||||
set=phi*nodalLset;
|
||||
delset=delphi*nodalLset;
|
||||
AfL=AfL+(phi'*sign(set))*(delset'*delphi)/3.;
|
||||
AfLGLS=AfLGLS+(delphi'*delset)*(1./norm(delset))*(delset'*delphi)/3.;
|
||||
end
|
||||
sum=AfL+AfLGLS;
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
A(NBelem(i,j),NBelem(i,k))=A(NBelem(i,j),NBelem(i,k))+sum(j,k);
|
||||
end
|
||||
end
|
||||
end
|
||||
% Apply BCs
|
||||
RHS=zeros(NBNodes,1);
|
||||
Sub=A*F;
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i)-Sub(i);
|
||||
Fred=0.;
|
||||
jindex=0;
|
||||
for j=1:NBNodes
|
||||
if F(j)==0.
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
% Solve for Fred
|
||||
Fred=(Ared^-1)*RHSred';
|
||||
% Get F
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
F(i)=Fred(iindex);
|
||||
end
|
||||
end
|
||||
% Update level set
|
||||
mMat=zeros(NBNodes);
|
||||
mMatGLS=zeros(NBNodes);
|
||||
f1=zeros(NBNodes,1);
|
||||
f2=zeros(NBNodes,1);
|
||||
f3=zeros(NBNodes,1);
|
||||
h2=0.00001;
|
||||
visc=0.0005;
|
||||
for i=1:NBElems
|
||||
mMatL=zeros(3);
|
||||
mMatGLSL=zeros(3);
|
||||
f1L=zeros(3,1);
|
||||
f2L=zeros(3,1);
|
||||
f3L=zeros(3,1);
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[lSetLocal(NBelem(i,1));lSetLocal(NBelem(i,2));lSetLocal(NBelem(i,3))];
|
||||
nodalF=[F(NBelem(i,1));F(NBelem(i,2));F(NBelem(i,3))];
|
||||
delset=delphi*nodalLset;
|
||||
Floc=phi*nodalF;
|
||||
mMatL=mMatL+(phi'*phi)/3.;
|
||||
mMatGLSL=mMatGLSL+((delphi'*(delset/norm(delset)))*Floc*(h2/abs(Floc)))*phi/3.;
|
||||
f1L=f1L+phi'*Floc*norm(delset)/3.;
|
||||
f2L=f2L+(delphi'*(delset/norm(delset))*Floc)*(h2/abs(Floc))*Floc*norm(delset)/3.;
|
||||
vs=h2*((abs(visc+Floc*norm(delset)))/(norm(Floc*delset)+h2));
|
||||
f3L=f3L+vs*delphi'*delset/3.;
|
||||
end
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
mMat(NBelem(i,j),NBelem(i,k))=mMat(NBelem(i,j),NBelem(i,k))+mMatL(j,k);
|
||||
mMatGLS(NBelem(i,j),NBelem(i,k))=mMatGLS(NBelem(i,j),NBelem(i,k))+mMatGLSL(j,k);
|
||||
end
|
||||
f1(NBelem(i,k))=f1(NBelem(i,k))+f1L(k);
|
||||
f2(NBelem(i,k))=f2(NBelem(i,k))+f2L(k);
|
||||
f3(NBelem(i,k))=f3(NBelem(i,k))+f3L(k);
|
||||
end
|
||||
end
|
||||
dt=0.01;
|
||||
lSetLocal=lSetLocal-((((mMat+mMatGLS)^-1)*dt)*(f1+f2+f3))';
|
||||
newlSet=lSetLocal;
|
||||
% Reinitialize LS
|
||||
nstat=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
L1=sign(lSetLocal(NBelem(i,1)));
|
||||
L2=sign(lSetLocal(NBelem(i,2)));
|
||||
L3=sign(lSetLocal(NBelem(i,3)));
|
||||
if L1 ~= L2 || L1 ~= L3
|
||||
for j=1:3
|
||||
nstat(NBelem(i,j))=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
maincheck=0;
|
||||
while(maincheck==0)
|
||||
lmin=1000.;
|
||||
avlmin=1000.;
|
||||
eindex=0;
|
||||
nindex=0;
|
||||
maincheck=1;
|
||||
for i=1:NBElems
|
||||
if nstat(NBelem(i,1))+nstat(NBelem(i,2))+nstat(NBelem(i,3))==2
|
||||
maincheck=0;
|
||||
check=0;
|
||||
ltot=0.;
|
||||
for j=1:3
|
||||
if nstat(NBelem(i,j))==0
|
||||
if abs(lSetLocal(NBelem(i,j)))<=lmin
|
||||
check=1;
|
||||
tempindex=j;
|
||||
end
|
||||
end
|
||||
ltot=ltot+abs(lSetLocal(NBelem(i,j)));
|
||||
end
|
||||
if check==1 & ltot/3.<=avlmin
|
||||
eindex=i;
|
||||
nindex=tempindex;
|
||||
lmin=lSetLocal(NBelem(eindex,nindex));
|
||||
avlmin=ltot/3.;
|
||||
end
|
||||
end
|
||||
end
|
||||
if maincheck==0
|
||||
% Find New LS for point
|
||||
xp=Node(NLocal(NBelem(eindex,nindex)),1);
|
||||
yp=Node(NLocal(NBelem(eindex,nindex)),2);
|
||||
count=0;
|
||||
for i=1:3
|
||||
if i~=nindex
|
||||
count=count+1;
|
||||
x(count)=Node(NLocal(NBelem(eindex,i)),1);
|
||||
y(count)=Node(NLocal(NBelem(eindex,i)),2);
|
||||
lloc(count)=newlSet(NBelem(eindex,i));
|
||||
end
|
||||
end
|
||||
delxa=x(1)-xp;
|
||||
delya=y(1)-yp;
|
||||
delxb=x(2)-xp;
|
||||
delyb=y(2)-yp;
|
||||
N=[delxa delya; delxb delyb];
|
||||
M=N^-1;
|
||||
A=(M(1)*M(1)+M(2)*M(2));
|
||||
B=(M(3)*M(3)+M(4)*M(4));
|
||||
C=2.*(M(1)*M(3)+M(2)*M(4));
|
||||
a=A+B+C;
|
||||
b=-2.*lloc(1)*A-2.*lloc(2)*B-C*(lloc(1)+lloc(2));
|
||||
c=lloc(1)*lloc(1)*A+lloc(2)*lloc(2)*B+lloc(1)*lloc(2)*C-1.;
|
||||
templ1=(-b+sqrt(b*b-4.*a*c))/(2.*a);
|
||||
templ2=(-b-sqrt(b*b-4.*a*c))/(2.*a);
|
||||
if abs(templ1)>abs(templ2)
|
||||
newlSet(NBelem(eindex,nindex))=templ1;
|
||||
else
|
||||
newlSet(NBelem(eindex,nindex))=templ2;
|
||||
end
|
||||
nstat(NBelem(eindex,nindex))=1;
|
||||
end
|
||||
end
|
||||
% lSetLocal=newlSet;
|
||||
% Update Global Level Set
|
||||
for i=1:NBNodes
|
||||
lSet(NLocal(i))=lSetLocal(i);
|
||||
end
|
||||
end
|
||||
lSet'
|
||||
[X Y]=meshgrid(0:0.25:8);
|
||||
Z=zeros(33);
|
||||
for i=1:1089
|
||||
Z(i)=lSet(i);
|
||||
end
|
||||
surf(X,Y,Z)
|
||||
|
||||
|
||||
|
165
Unpublished/XFEM2/Full2D/FESolve2DS.asv
Normal file
165
Unpublished/XFEM2/Full2D/FESolve2DS.asv
Normal file
|
@ -0,0 +1,165 @@
|
|||
function [] = FESolve2DS()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=4;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=1;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
end
|
||||
% regular element - fix extra dofs
|
||||
enr=4;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(2)=0.25*(1.+g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.+h);
|
||||
phi(4)=0.25*(1.-g)*(1.+h);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(2)=0.25*(1.-h);
|
||||
phig(3)=0.25*(1.+h);
|
||||
phig(4)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(2)=0.25*-(1.+g);
|
||||
phih(3)=0.25*(1.+g);
|
||||
phih(4)=0.25*(1.-g);
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(iter)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(iter)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(iter)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(iter)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:4
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(j,i);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
RHS=M*Tnew-Sub+pforce;
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSR(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR^-1)*RHSR';
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=Tnewr(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
151
Unpublished/XFEM2/Full2D/FESolve2DS.m
Normal file
151
Unpublished/XFEM2/Full2D/FESolve2DS.m
Normal file
|
@ -0,0 +1,151 @@
|
|||
function [] = FESolve2DS()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=4;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes,1);
|
||||
Bound=zeros(numNodes,1);
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=0.6
|
||||
Tnew(Element(e,n))=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(Element(e,n))=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
K=zeros(numNodes,numNodes);
|
||||
M=zeros(numNodes,numNodes);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4);
|
||||
Me=zeros(4);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
end
|
||||
% regular element - fix extra dofs
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:4;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(2)=0.25*(1.+g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.+h);
|
||||
phi(4)=0.25*(1.-g)*(1.+h);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(2)=0.25*(1.-h);
|
||||
phig(3)=0.25*(1.+h);
|
||||
phig(4)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(2)=0.25*-(1.+g);
|
||||
phih(3)=0.25*(1.+g);
|
||||
phih(4)=0.25*(1.-g);
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(iter)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(iter)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(iter)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(iter)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:4
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=Element(e,1);
|
||||
gnum(2)=Element(e,2);
|
||||
gnum(3)=Element(e,3);
|
||||
gnum(4)=Element(e,4);
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(j,i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(j,i);
|
||||
end
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
RHS=M*Tnew-Sub;
|
||||
iindex=0;
|
||||
for i=1:numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSR(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR^-1)*RHSR';
|
||||
iindex=0;
|
||||
for i=1:numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=Tnewr(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
411
Unpublished/XFEM2/Full2D/FESolveX2D.asv
Normal file
411
Unpublished/XFEM2/Full2D/FESolveX2D.asv
Normal file
|
@ -0,0 +1,411 @@
|
|||
function [] = FESolveX2D()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=4;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% penalty term
|
||||
Penalty=00.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
eNodes=zeros(2*numNodes,1);
|
||||
% Get interface velocity
|
||||
d(1)=dpos+delX;
|
||||
d(2)=dpos+3*delX/4;
|
||||
d(3)=dpos+delX/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=Node(Element(e,1),1);
|
||||
crdn2=Node(Element(e,2),1);
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 && d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(Element(e,1)*2-1);
|
||||
tmp1b=Tnew(Element(e,1)*2);
|
||||
tmp2a=Tnew(Element(e,2)*2-1);
|
||||
tmp2b=Tnew(Element(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
% vel=-0.1*(0.5/delX)*(2*t(1)+t(2)-t(3)-2*t(4))
|
||||
vel=0.0;
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos);
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% possible enriched element
|
||||
npart=10;
|
||||
enr=npart*npart;
|
||||
for sdx=1:npart
|
||||
for sdy=1:npart
|
||||
midx=-1.-1./npart+(2./npart)*sdx;
|
||||
midy=-1.-1./npart+(2./npart)*sdy;
|
||||
subindex=npart*(sdy-1)+sdx;
|
||||
gpos=1./(sqrt(3.)*npart);
|
||||
gx(subindex,1)=midx-gpos;
|
||||
gx(subindex,2)=midx+gpos;
|
||||
gx(subindex,3)=midx+gpos;
|
||||
gx(subindex,4)=midx-gpos;
|
||||
hx(subindex,1)=midy-gpos;
|
||||
hx(subindex,2)=midy-gpos;
|
||||
hx(subindex,3)=midy+gpos;
|
||||
hx(subindex,4)=midy+gpos;
|
||||
end
|
||||
end
|
||||
% check if int points are on different sides of front
|
||||
check=0;
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
if i==1 && j==1
|
||||
sgn=sign(iLS);
|
||||
else
|
||||
if sign(iLS)~=sgn
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==0
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
|
||||
|
||||
eNodes(2*Element(e,1))=1;
|
||||
eNodes(2*Element(e,2))=1;
|
||||
eNodes(2*Element(e,3))=1;
|
||||
eNodes(2*Element(e,4))=1;
|
||||
% enriched element
|
||||
enr=8;
|
||||
% get interface position on element
|
||||
elen=abs(crdnx(2)-crdnx(1));
|
||||
frac=abs(dpos-crdnx(1))/elen;
|
||||
len1=2.*frac;
|
||||
len2=2.*(1.-frac);
|
||||
% devide element for sub integration
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gx(1)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(2)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(3)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(4)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(5)=mid2-(len2/2.)/sqrt(3.);
|
||||
gx(6)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(7)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(8)=mid2-(len2/2.)/sqrt(3.);
|
||||
gpos=1/sqrt(3.);
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=+gpos;
|
||||
hx(4)=+gpos;
|
||||
hx(5)=-gpos;
|
||||
hx(6)=-gpos;
|
||||
hx(7)=+gpos;
|
||||
hx(8)=+gpos;
|
||||
for iw=1:4
|
||||
w(iw)=frac/2.;
|
||||
w(iw+4)=(1.-frac)/2.;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=4;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
for iter=1:4
|
||||
if enr==8
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
else
|
||||
phi(2*iter)=0.;
|
||||
end
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
if enr==8
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
else
|
||||
phig(2*iter)=0.;
|
||||
phih(2*iter)=0.;
|
||||
end
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==8;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i))=K(gnum(j)+1,gnum(i))+Ke(2*j,2*i-1);
|
||||
K(gnum(j),gnum(i)+1)=K(gnum(j),gnum(i)+1)+Ke(2*j-1,2*i);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i))=M(gnum(j)+1,gnum(i))+Me(2*j,2*i-1);
|
||||
M(gnum(j),gnum(i)+1)=M(gnum(j),gnum(i)+1)+Me(2*j-1,2*i);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove NON-ENHANCED DOFs(Reduce Matrices)
|
||||
iindex=0.;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(i,2)==0 && eNodes(i)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
TR1(iindex)=Tnew(i);
|
||||
BR1(iindex)=Bound(i);
|
||||
pforceR1(iindex)=pforce(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(j,2)==0 && eNodes(j)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
jindex=jindex+1;
|
||||
MR1(iindex,jindex)=M(i,j);
|
||||
KR1(iindex,jindex)=K(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
AR1=KR1+MR1;
|
||||
SubR1=AR1*BR1';
|
||||
RHSR1=MR1*TR1'-SubR1+pforceR1';
|
||||
% Apply Boundary Conditions
|
||||
Biindex=0.;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
RHSR2(Biindex)=RHSR1(i);
|
||||
jindex=0;
|
||||
for j=1:iindex;
|
||||
check=0;
|
||||
if BR1(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR2(Biindex,jindex)=AR1(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR2^-1)*RHSR2';
|
||||
% Restore Matrices
|
||||
Biindex=0;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
TR1(i)=Tnewr(Biindex);
|
||||
end
|
||||
end
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(i,2)==0 && eNodes(i)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=TR1(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
364
Unpublished/XFEM2/Full2D/FESolveX2D.m
Normal file
364
Unpublished/XFEM2/Full2D/FESolveX2D.m
Normal file
|
@ -0,0 +1,364 @@
|
|||
function [] = FESolveX2D()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=4;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% penalty term
|
||||
Penalty=50.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
eNodes=zeros(2*numNodes,1);
|
||||
% Get interface velocity
|
||||
d(1)=dpos+delX;
|
||||
d(2)=dpos+3*delX/4;
|
||||
d(3)=dpos+delX/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=Node(Element(e,1),1);
|
||||
crdn2=Node(Element(e,2),1);
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 && d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(Element(e,1)*2-1);
|
||||
tmp1b=Tnew(Element(e,1)*2);
|
||||
tmp2a=Tnew(Element(e,2)*2-1);
|
||||
tmp2b=Tnew(Element(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
% vel=-0.1*(0.5/delX)*(2*t(1)+t(2)-t(3)-2*t(4))
|
||||
vel=0.0;
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos);
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% possible enriched element
|
||||
npart=10;
|
||||
enr=npart*npart;
|
||||
for sdx=1:npart
|
||||
for sdy=1:npart
|
||||
midx=-1.-1./npart+(2./npart)*sdx;
|
||||
midy=-1.-1./npart+(2./npart)*sdy;
|
||||
subindex=npart*(sdy-1)+sdx;
|
||||
gpos=1./(sqrt(3.)*npart);
|
||||
gx(subindex,1)=midx-gpos;
|
||||
gx(subindex,2)=midx+gpos;
|
||||
gx(subindex,3)=midx+gpos;
|
||||
gx(subindex,4)=midx-gpos;
|
||||
hx(subindex,1)=midy-gpos;
|
||||
hx(subindex,2)=midy-gpos;
|
||||
hx(subindex,3)=midy+gpos;
|
||||
hx(subindex,4)=midy+gpos;
|
||||
end
|
||||
end
|
||||
% check if int points are on different sides of front
|
||||
check=0;
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
if i==1 && j==1
|
||||
sgn=sign(iLS);
|
||||
else
|
||||
if sign(iLS)~=sgn
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==0
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=djac;
|
||||
Ke=Ke+(we*cond*(phix'*phix+phiy'*phiy))/double(enr);
|
||||
Me=Me+((we*rho*spec*phi'*phi)/dtime)/double(enr);
|
||||
end
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr>1;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i))=K(gnum(j)+1,gnum(i))+Ke(2*j,2*i-1);
|
||||
K(gnum(j),gnum(i)+1)=K(gnum(j),gnum(i)+1)+Ke(2*j-1,2*i);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i))=M(gnum(j)+1,gnum(i))+Me(2*j,2*i-1);
|
||||
M(gnum(j),gnum(i)+1)=M(gnum(j),gnum(i)+1)+Me(2*j-1,2*i);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove NON-ENHANCED DOFs(Reduce Matrices)
|
||||
iindex=0.;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
% if mod(i,2)==0 && eNodes(i)~=1
|
||||
% check=1;
|
||||
% end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
TR1(iindex)=Tnew(i);
|
||||
BR1(iindex)=Bound(i);
|
||||
pforceR1(iindex)=pforce(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
check=0;
|
||||
% if mod(j,2)==0 && eNodes(j)~=1
|
||||
% check=1;
|
||||
% end
|
||||
if check==0
|
||||
jindex=jindex+1;
|
||||
MR1(iindex,jindex)=M(i,j);
|
||||
KR1(iindex,jindex)=K(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
AR1=KR1+MR1;
|
||||
SubR1=AR1*BR1';
|
||||
RHSR1=MR1*TR1'-SubR1+pforceR1';
|
||||
% Apply Boundary Conditions
|
||||
Biindex=0.;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
RHSR2(Biindex)=RHSR1(i);
|
||||
jindex=0;
|
||||
for j=1:iindex;
|
||||
check=0;
|
||||
if BR1(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR2(Biindex,jindex)=AR1(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR2^-1)*RHSR2';
|
||||
% Restore Matrices
|
||||
Biindex=0;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
TR1(i)=Tnewr(Biindex);
|
||||
end
|
||||
end
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
% if mod(i,2)==0 && eNodes(i)~=1
|
||||
% check=1;
|
||||
% end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=TR1(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
269
Unpublished/XFEM2/Full2D/FESolveX2DLS.m
Normal file
269
Unpublished/XFEM2/Full2D/FESolveX2DLS.m
Normal file
|
@ -0,0 +1,269 @@
|
|||
function [] = FESolveX2DLS()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=3;
|
||||
NumY=1;
|
||||
delX=1.;
|
||||
delY=1.;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.1;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.1;
|
||||
tsteps=20;
|
||||
time=0.;
|
||||
% penalty term
|
||||
beta=80.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
% Get interface velocity
|
||||
d(1)=dpos+delX;
|
||||
d(2)=dpos+3*delX/4;
|
||||
d(3)=dpos+delX/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=Node(Element(e,1),1);
|
||||
crdn2=Node(Element(e,2),1);
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 & d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(Element(e,1)*2-1);
|
||||
tmp1b=Tnew(Element(e,1)*2);
|
||||
tmp2a=Tnew(Element(e,2)*2-1);
|
||||
tmp2b=Tnew(Element(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
% vel=-0.1*(0.5/delX)*(2*t(1)+t(2)-t(3)-2*t(4))
|
||||
vel=0.0;
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos);
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% enriched element
|
||||
enr=8;
|
||||
% get interface position on element
|
||||
elen=abs(crdnx(2)-crdnx(1));
|
||||
frac=abs(dpos-crdnx(1))/elen;
|
||||
len1=2.*frac;
|
||||
len2=2.*(1.-frac);
|
||||
% devide element for sub integration
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gx(1)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(2)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(3)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(4)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(5)=mid2-(len2/2.)/sqrt(3.);
|
||||
gx(6)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(7)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(8)=mid2-(len2/2.)/sqrt(3.);
|
||||
gpos=1/sqrt(3.);
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=+gpos;
|
||||
hx(4)=+gpos;
|
||||
hx(5)=-gpos;
|
||||
hx(6)=-gpos;
|
||||
hx(7)=+gpos;
|
||||
hx(8)=+gpos;
|
||||
for iw=1:4
|
||||
w(iw)=frac/2.;
|
||||
w(iw+4)=(1.-frac)/2.;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=4;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
if iLS<0.
|
||||
cond=0.;
|
||||
spec=0.01;
|
||||
else
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
end
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==8;
|
||||
xi=2.*frac-1;
|
||||
yi=0.;
|
||||
gm(1)=0.25*(1.-xi)*(1.-yi);
|
||||
gm(3)=0.25*(1.+xi)*(1.-yi);
|
||||
gm(5)=0.25*(1.+xi)*(1.+yi);
|
||||
gm(7)=0.25*(1.-xi)*(1.+yi);
|
||||
gm(2)=gm(1)*(-abs(theta(1)));
|
||||
gm(4)=gm(3)*(-abs(theta(2)));
|
||||
gm(6)=gm(5)*(-abs(theta(3)));
|
||||
gm(8)=gm(7)*(-abs(theta(4)));
|
||||
pen=beta*(gm'*gm);
|
||||
pfL=beta*1.*gm';
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
RHS=M*Tnew;
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i)-Sub(i)+pforce(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
StiffI=Ared^-1;
|
||||
Tnewr=(Ared^-1)*RHSred';
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=Tnewr(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored'
|
305
Unpublished/XFEM2/Full2D/FESolveX2Db.asv
Normal file
305
Unpublished/XFEM2/Full2D/FESolveX2Db.asv
Normal file
|
@ -0,0 +1,305 @@
|
|||
function [] = FESolveX2Db()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=2;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.4;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=1;
|
||||
time=0.;
|
||||
% penalty term
|
||||
Penalty=00.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
% Get interface velocity
|
||||
d(1)=dpos+delX;
|
||||
d(2)=dpos+3*delX/4;
|
||||
d(3)=dpos+delX/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=Node(Element(e,1),1);
|
||||
crdn2=Node(Element(e,2),1);
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 && d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(Element(e,1)*2-1);
|
||||
tmp1b=Tnew(Element(e,1)*2);
|
||||
tmp2a=Tnew(Element(e,2)*2-1);
|
||||
tmp2b=Tnew(Element(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
% vel=-0.1*(0.5/delX)*(2*t(1)+t(2)-t(3)-2*t(4))
|
||||
vel=0.0;
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos);
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% enriched element
|
||||
enr=8;
|
||||
% get interface position on element
|
||||
elen=abs(crdnx(2)-crdnx(1));
|
||||
frac=abs(dpos-crdnx(1))/elen;
|
||||
len1=2.*frac;
|
||||
len2=2.*(1.-frac);
|
||||
% devide element for sub integration
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gx(1)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(2)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(3)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(4)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(5)=mid2-(len2/2.)/sqrt(3.);
|
||||
gx(6)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(7)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(8)=mid2-(len2/2.)/sqrt(3.);
|
||||
gpos=1/sqrt(3.);
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=+gpos;
|
||||
hx(4)=+gpos;
|
||||
hx(5)=-gpos;
|
||||
hx(6)=-gpos;
|
||||
hx(7)=+gpos;
|
||||
hx(8)=+gpos;
|
||||
for iw=1:4
|
||||
w(iw)=frac/2.;
|
||||
w(iw+4)=(1.-frac)/2.;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=4;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
Me
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==8;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i))=M(gnum(j)+1,gnum(i))+Me(2*j,2*i-1);
|
||||
M(gnum(j),gnum(i)+1)=M(gnum(j),gnum(i)+1)+Me(2*j-1,2*i);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
M
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
M*Tnew;
|
||||
RHS=M*Tnew-Sub+pforce;
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSR(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR^-1)*RHSR';
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=Tnewr(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
271
Unpublished/XFEM2/Full2D/FESolveX2Db.m
Normal file
271
Unpublished/XFEM2/Full2D/FESolveX2Db.m
Normal file
|
@ -0,0 +1,271 @@
|
|||
function [] = FESolveX2Db()
|
||||
% MATLAB based 2-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=4;
|
||||
NumY=1;
|
||||
delX=0.25;
|
||||
delY=0.25;
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
numElem=(NumX)*(NumY);
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
for e=1:numElem
|
||||
for n=1:4
|
||||
crdn=Node(Element(e,n),1);
|
||||
if crdn<=dpos
|
||||
Tnew(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
if crdn<0.01
|
||||
Bound(2*Element(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=1;
|
||||
time=0.;
|
||||
% penalty term
|
||||
Penalty=00.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(4*ndof);
|
||||
Me=zeros(4*ndof);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos);
|
||||
end
|
||||
% if sign(theta(1))~=sign(theta(2))
|
||||
if 1==2
|
||||
% enriched element
|
||||
enr=8;
|
||||
% get interface position on element
|
||||
elen=abs(crdnx(2)-crdnx(1));
|
||||
frac=abs(dpos-crdnx(1))/elen;
|
||||
len1=2.*frac;
|
||||
len2=2.*(1.-frac);
|
||||
% devide element for sub integration
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gx(1)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(2)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(3)=mid1+(len1/2.)/sqrt(3.);
|
||||
gx(4)=mid1-(len1/2.)/sqrt(3.);
|
||||
gx(5)=mid2-(len2/2.)/sqrt(3.);
|
||||
gx(6)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(7)=mid2+(len2/2.)/sqrt(3.);
|
||||
gx(8)=mid2-(len2/2.)/sqrt(3.);
|
||||
gpos=1/sqrt(3.);
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=+gpos;
|
||||
hx(4)=+gpos;
|
||||
hx(5)=-gpos;
|
||||
hx(6)=-gpos;
|
||||
hx(7)=+gpos;
|
||||
hx(8)=+gpos;
|
||||
for iw=1:4
|
||||
w(iw)=frac/2.;
|
||||
w(iw+4)=(1.-frac)/2.;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=4;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1)=-gpos;
|
||||
gx(2)=gpos;
|
||||
gx(3)=gpos;
|
||||
gx(4)=-gpos;
|
||||
hx(1)=-gpos;
|
||||
hx(2)=-gpos;
|
||||
hx(3)=gpos;
|
||||
hx(4)=gpos;
|
||||
for iw=1:4
|
||||
w(iw)=1.;
|
||||
end
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
g=gx(i);
|
||||
h=hx(i);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=w(i)*djac;
|
||||
B=[phix;phiy];
|
||||
% Ke=Ke+we*cond*(phix'*phix+phiy'*phiy);
|
||||
Ke=Ke+we*cond*(B'*B);
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==8;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i))=K(gnum(j)+1,gnum(i))+Ke(2*j,2*i-1);
|
||||
K(gnum(j),gnum(i)+1)=K(gnum(j),gnum(i)+1)+Ke(2*j-1,2*i);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i))=M(gnum(j)+1,gnum(i))+Me(2*j,2*i-1);
|
||||
M(gnum(j),gnum(i)+1)=M(gnum(j),gnum(i)+1)+Me(2*j-1,2*i);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
RHS=M*Tnew-Sub+pforce;
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSR(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR^-1)*RHSR';
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=Tnewr(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
404
Unpublished/XFEM2/Full2D/LevelSet.f90
Normal file
404
Unpublished/XFEM2/Full2D/LevelSet.f90
Normal file
|
@ -0,0 +1,404 @@
|
|||
! This Subroutine Implements the Level Set Method
|
||||
! J. Grogan - 07/10/13
|
||||
subroutine uexternaldb(lop,lrestart,time,dtime,kstep,kinc)
|
||||
include 'aba_param.inc'
|
||||
dimension time(2)
|
||||
integer Element (100,4)
|
||||
real Node(100,2),LSet(100)
|
||||
!
|
||||
if(lop==0)then
|
||||
! Get Mesh Data
|
||||
call getMesh(Element,Node,numElem,numNodes)
|
||||
! Get Initial Level Set
|
||||
call initialLSet(LSet,Node,numNodes)
|
||||
elseif(lop==1)then
|
||||
! Update Level Set
|
||||
call updateLSet(Node,numNodes,Element,numElem,dtime,LSet)
|
||||
endif
|
||||
return
|
||||
end
|
||||
! This subroutine returns the finite element mesh connectivity data
|
||||
subroutine getMesh(Element,Node,numElem,numNodes)
|
||||
include 'aba_param.inc'
|
||||
integer Element (100,4)
|
||||
real Node(100,2)
|
||||
character(256) outdir,jobname,input
|
||||
call getoutdir(outdir,lenoutdir)
|
||||
call getjobname(jobname,lenjobname)
|
||||
filename=trim(outdir)//trim(jobname)//'.inp'
|
||||
open(unit=107,file=filename,status='old')
|
||||
read(107,*)input
|
||||
do while (index(input,'*Node')==0)
|
||||
read(107,*)input
|
||||
enddo
|
||||
ierr=0
|
||||
numNodes=0
|
||||
do while (ierr==0)
|
||||
read(107,*)nodeNum,xcor,ycor,zcor
|
||||
if(ierr==0)then
|
||||
Node(nodeNum,1)=xcor
|
||||
Node(nodeNum,2)=ycor
|
||||
numNodes=numNodes+1
|
||||
endif
|
||||
enddo
|
||||
do while (index(input,'*Element')==0)
|
||||
read(107,*)input
|
||||
enddo
|
||||
numElem=0
|
||||
do while (ierr==0)
|
||||
read(107,*)elNum,n1,n2,n3,n4
|
||||
if(ierr==0)then
|
||||
Element(elNum,1)=n1
|
||||
Element(elNum,2)=n2
|
||||
Element(elNum,3)=n3
|
||||
Element(elNum,4)=n4
|
||||
numElem=numElem+1
|
||||
endif
|
||||
enddo
|
||||
close(107)
|
||||
end subroutine
|
||||
! This subroutine calculates the initial Level Set
|
||||
subroutine initialLSet(LSet,Node,numNodes)
|
||||
include 'aba_param.inc'
|
||||
real Node(100,2),LSet(100)
|
||||
!centx=4.
|
||||
!centy=4.
|
||||
!rad=2.1
|
||||
!do i=1,numNodes
|
||||
! dist=sqrt((Node(i,1)-centx)*(Node(i,1)-centx)+(Node(i,2)-centy)*(Node(i,2)-centy))
|
||||
! LSet(i)=dist-rad
|
||||
!enddo
|
||||
do i=1,numNodes
|
||||
dist=Node(i,1)-0.1
|
||||
LSet(i)=dist
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine updates the Level Set
|
||||
subroutine updateLSet(Node,numNodes,Element,numElem,dtime,LSet)
|
||||
include 'aba_param.inc'
|
||||
integer Element(100,4),NBelem(100,4)
|
||||
real Node(100,2),NGlobal(100,2),NLocal(100,2)
|
||||
real LSet(100),LSetLocal(100),F(100),Fred(100)
|
||||
real A(100,100),Ared(100,100),RHS(100),RHSred(100)
|
||||
real M(100,100),MGL(100,100),f1(100),f2(100),f3(100)
|
||||
! parameters
|
||||
bandWidth=10.
|
||||
av_Length=1.
|
||||
h2=0.00001*av_Length
|
||||
visc=0.0005
|
||||
dt=0.01
|
||||
! explicit update of Level Set
|
||||
do istep=1:floor(dtime/dt)
|
||||
! Identify Narrow Band Elements and Get Local Level Set
|
||||
call getNarrowBand(NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal, &
|
||||
& bandWidth,LSet,Element,numElem,numNodes)
|
||||
! Identify Scalar Velocity on Nodes Crossed By Interface - F
|
||||
call getF(F,LSetLocal,NBElems,NBNodes,NBelem)
|
||||
! Get 'Stiffness' Matrix - A
|
||||
call getA(A,Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal)
|
||||
! Apply BCs
|
||||
RHS=-matmul(A,F)
|
||||
iindex=0
|
||||
do i=1,NBNodes
|
||||
if (F(i)==0.)then
|
||||
iindex=iindex+1
|
||||
RHSred(iindex)=RHS(i)
|
||||
jindex=0
|
||||
do j=1,NBNodes
|
||||
if (F(j)==0.)then
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j)
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
! Solve for Fred
|
||||
Fred=(Ared^-1)*RHSred'
|
||||
! Get F
|
||||
iindex=0
|
||||
do i=1,NBNodes
|
||||
if (F(i)==0.)then
|
||||
iindex=iindex+1
|
||||
F(i)=Fred(iindex)
|
||||
endif
|
||||
enddo
|
||||
! Get Level Set Equation Terms
|
||||
call getTerms(M,MGLS,f1,f2,f3,Node,NLocal,NBelem,NBNodes,NBElems,&
|
||||
& LSetLocal,visc,h2,F)
|
||||
LSetLocal=LSetLocal-((((M+MGLS)^-1)*dt)*(f1+f2+f3))'
|
||||
! Reinitialize LS
|
||||
!call fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes)
|
||||
do i=1,NBNodes
|
||||
LSet(NLocal(i))=LSetLocal(i)
|
||||
end
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine identifies elements in the narrow band
|
||||
subroutine getNarrowBand(NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal,&
|
||||
& bandWidth,LSet,Element,numElem,numNodes)
|
||||
include 'aba_param.inc'
|
||||
integer Element(100,4),NBelem(100,4)
|
||||
real Node(100,2),NGlobal(100,2),NLocal(100,2)
|
||||
real LSet(100),LSetLocal(100)
|
||||
! Identify Narrow Band Elements
|
||||
NBElems=0
|
||||
NBNodes=0
|
||||
NGlobal=0.
|
||||
do i=1,numElem
|
||||
check=0
|
||||
do iNd=1,4
|
||||
if (abs(LSet(Element(i,iNd)))<=bandWidth*(delX+delY)/2.)then
|
||||
check=1
|
||||
endif
|
||||
enddo
|
||||
! If an element is in the narrow band split it into triangles
|
||||
if (check==1)then
|
||||
for j=1,4
|
||||
if (NGlobal(Element(i,j))==0)then
|
||||
NBNodes=NBNodes+1
|
||||
NGlobal(Element(i,j))=NBNodes
|
||||
NLocal(NBNodes)=Element(i,j)
|
||||
endif
|
||||
endddo
|
||||
NBElems=NBElems+1
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1))
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,2))
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,3))
|
||||
NBElems=NBElems+1
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1))
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,3))
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,4))
|
||||
endif
|
||||
enddo
|
||||
! Get local Level Set
|
||||
do i=1,NBNodes
|
||||
LSetLocal(i)=LSet(NLocal(i))
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine extends the interface velocity throughout the computational domain
|
||||
subroutine getF(F,LSetLocal,NBElems,NBNodes,NBelem)
|
||||
include 'aba_param.inc'
|
||||
real LSetLocal(100),F(100),L(3)
|
||||
F=0.
|
||||
do i=1,NBElems
|
||||
do j=1,3
|
||||
L(j)=sign(1.,LSetLocal(NBelem(i,j)))
|
||||
enddo
|
||||
if (L(1) /= L(2) .or. L(1) /= L(3))then
|
||||
do j=1,3
|
||||
F(NBelem(i,j))= 1.
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine gets the 'stiffness' matrix - A
|
||||
subroutine getA(A,Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal)
|
||||
include 'aba_param.inc'
|
||||
integer NBelem(100,4)
|
||||
real Node(100,2),NLocal(100,2)
|
||||
real LSetLocal(100),A(100,100),AfL(3,3),AfLGLS(3,3)
|
||||
real gx(3),hx(3),phi(3),phig(3),phih(3),phix(3),phiy(3)
|
||||
A=0.
|
||||
do i=1,NBElems
|
||||
gx(1)=2./3.
|
||||
gx(2)=1./6.
|
||||
gx(3)=1./6.
|
||||
hx(1)=1./6.
|
||||
hx(2)=1./6.
|
||||
hx(3)=2./3.
|
||||
AfL=0.
|
||||
AfLGLS=0.
|
||||
x1=Node(NLocal(NBelem(i,1)),1)
|
||||
y1=Node(NLocal(NBelem(i,1)),2)
|
||||
x2=Node(NLocal(NBelem(i,2)),1)
|
||||
y2=Node(NLocal(NBelem(i,2)),2)
|
||||
x3=Node(NLocal(NBelem(i,3)),1)
|
||||
y3=Node(NLocal(NBelem(i,3)),2)
|
||||
do j=1,3
|
||||
g=gx(j)
|
||||
h=hx(j)
|
||||
phi(1)=1.-g-h
|
||||
phi(2)=g
|
||||
phi(3)=h
|
||||
phig(1)=-1.
|
||||
phig(2)=1.
|
||||
phig(3)=0.
|
||||
phih(1)=-1.
|
||||
phih(2)=0.
|
||||
phih(3)=1.
|
||||
djac=2.*abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2))
|
||||
do k=1,3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k))
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k))
|
||||
enddo
|
||||
delphi=[phix;phiy]
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))]
|
||||
set=phi*nodalLset
|
||||
delset=delphi*nodalLset
|
||||
AfL=AfL+(phi'*sign(set))*(delset'*delphi)/3.
|
||||
AfLGLS=AfLGLS+(delphi'*delset)*(1./norm(delset))*(delset'*delphi)/3.
|
||||
enddo
|
||||
do k=1,3
|
||||
do j=1,3
|
||||
A(NBelem(i,j),NBelem(i,k))=A(NBelem(i,j),NBelem(i,k))+AfL(j,k)+AfLGLS(j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine gets the neccessary terms for the level set equation
|
||||
subroutine getTerms(M,MGLS,f1,f2,f3,Node,NLocal,NBelem,NBNodes,NBElems,&
|
||||
& LSetLocal,visc,h2,F)
|
||||
include 'aba_param.inc'
|
||||
integer NBelem(100,4)
|
||||
real Node(100,2),NLocal(100,2),LSetLocal(100)
|
||||
real M(100,100),MGLS(100,100),f1(100),f2(100),f3(100)
|
||||
real ML(3,3),MGLSL(3,3),f1L(3),f2L(3),f3L(3)
|
||||
real gx(3),hx(3),phi(3),phig(3),phih(3),phix(3),phiy(3)
|
||||
|
||||
M=0.
|
||||
MGLS=0.
|
||||
f1=0.
|
||||
f2=0.
|
||||
f3=0.
|
||||
do i=1,NBElems
|
||||
ML=0.
|
||||
MGLSL=0.
|
||||
f1L=0.
|
||||
f2L=0.
|
||||
f3L=0.
|
||||
gx(1)=2./3.
|
||||
gx(2)=1./6.
|
||||
gx(3)=1./6.
|
||||
hx(1)=1./6.
|
||||
hx(2)=1./6.
|
||||
hx(3)=2./3.
|
||||
x1=Node(NLocal(NBelem(i,1)),1)
|
||||
y1=Node(NLocal(NBelem(i,1)),2)
|
||||
x2=Node(NLocal(NBelem(i,2)),1)
|
||||
y2=Node(NLocal(NBelem(i,2)),2)
|
||||
x3=Node(NLocal(NBelem(i,3)),1)
|
||||
y3=Node(NLocal(NBelem(i,3)),2)
|
||||
do j=1,3
|
||||
g=gx(j)
|
||||
h=hx(j)
|
||||
phi(1)=1.-g-h
|
||||
phi(2)=g
|
||||
phi(3)=h
|
||||
phig(1)=-1.
|
||||
phig(2)=1.
|
||||
phig(3)=0.
|
||||
phih(1)=-1.
|
||||
phih(2)=0.
|
||||
phih(3)=1.
|
||||
djac=abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2))
|
||||
do k=1,3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k))
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k))
|
||||
end
|
||||
delphi=[phix;phiy]
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))]
|
||||
nodalF=[F(NBelem(i,1));F(NBelem(i,2));F(NBelem(i,3))]
|
||||
delset=delphi*nodalLset;
|
||||
Floc=phi*nodalF
|
||||
ML=ML+(phi'*phi)/3.
|
||||
MGLSL=MGLSL+((delphi'*(delset/norm(delset)))*Floc*(h2/abs(Floc)))*phi/3.
|
||||
f1L=f1L+phi'*Floc*norm(delset)/3.
|
||||
f2L=f2L+(delphi'*(delset/norm(delset))*Floc)*(h2/abs(Floc))*Floc*norm(delset)/3.
|
||||
vs=h2*((abs(visc+Floc*norm(delset)))/(norm(Floc*delset)+h2))
|
||||
f3L=f3L+vs*delphi'*delset/3.
|
||||
enddo
|
||||
do k=1,3
|
||||
do j=1,3
|
||||
M(NBelem(i,j),NBelem(i,k))=M(NBelem(i,j),NBelem(i,k))+ML(j,k)
|
||||
MGLS(NBelem(i,j),NBelem(i,k))=MGLS(NBelem(i,j),NBelem(i,k))+MGLSL(j,k)
|
||||
enddo
|
||||
f1(NBelem(i,k))=f1(NBelem(i,k))+f1L(k)
|
||||
f2(NBelem(i,k))=f2(NBelem(i,k))+f2L(k)
|
||||
f3(NBelem(i,k))=f3(NBelem(i,k))+f3L(k)
|
||||
enddo
|
||||
enddo
|
||||
end subroutine
|
||||
! This subroutine uses the fast marching method to re-initialize the level set
|
||||
call fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes)
|
||||
include 'aba_param.inc'
|
||||
integer NBelem(100,4),nstat(100)
|
||||
real Node(100,2),NLocal(100,2),LSetLocal(100),newlSet(100),L(3)
|
||||
newlSet=LSetLocal
|
||||
! Reinitialize LS
|
||||
nstat=0
|
||||
do i=1,NBElems
|
||||
do j=1,3
|
||||
L(j)=sign(1.,lSetLocal(NBelem(i,j)))
|
||||
enddo
|
||||
if (L(1) /= L(2) .or. L(1) /= L(3))then
|
||||
do j=1,3
|
||||
nstat(NBelem(i,j))=1
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
maincheck=0
|
||||
do while(maincheck==0)
|
||||
lmin=1000.
|
||||
avlmin=1000.
|
||||
eindex=0
|
||||
nindex=0
|
||||
maincheck=1
|
||||
do i=1,NBElems
|
||||
if (nstat(NBelem(i,1))+nstat(NBelem(i,2))+nstat(NBelem(i,3))==2)then
|
||||
maincheck=0
|
||||
check=0
|
||||
ltot=0.
|
||||
do j=1,3
|
||||
if (nstat(NBelem(i,j))==0)then
|
||||
if (abs(lSetLocal(NBelem(i,j)))<=lmin)then
|
||||
check=1
|
||||
tempindex=j
|
||||
endif
|
||||
endif
|
||||
ltot=ltot+abs(lSetLocal(NBelem(i,j)))
|
||||
enddo
|
||||
if (check==1 .and. ltot/3.<=avlmin)then
|
||||
eindex=i
|
||||
nindex=tempindex
|
||||
lmin=lSetLocal(NBelem(eindex,nindex))
|
||||
avlmin=ltot/3.
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
if (maincheck==0)then
|
||||
! Find New LS for point
|
||||
xp=Node(NLocal(NBelem(eindex,nindex)),1)
|
||||
yp=Node(NLocal(NBelem(eindex,nindex)),2)
|
||||
count=0
|
||||
do i=1,3
|
||||
if (i/=nindex)then
|
||||
icount=icount+1
|
||||
x(icount)=Node(NLocal(NBelem(eindex,i)),1)
|
||||
y(icount)=Node(NLocal(NBelem(eindex,i)),2)
|
||||
lloc(icount)=newlSet(NBelem(eindex,i))
|
||||
endif
|
||||
enddo
|
||||
delxa=x(1)-xp
|
||||
delya=y(1)-yp
|
||||
delxb=x(2)-xp
|
||||
delyb=y(2)-yp
|
||||
N=[delxa delya; delxb delyb]
|
||||
M=N^-1
|
||||
A=(M(1)*M(1)+M(2)*M(2))
|
||||
B=(M(3)*M(3)+M(4)*M(4))
|
||||
C=2.*(M(1)*M(3)+M(2)*M(4))
|
||||
a=A+B+C
|
||||
b=-2.*lloc(1)*A-2.*lloc(2)*B-C*(lloc(1)+lloc(2))
|
||||
c=lloc(1)*lloc(1)*A+lloc(2)*lloc(2)*B+lloc(1)*lloc(2)*C-1.
|
||||
templ1=(-b+sqrt(b*b-4.*a*c))/(2.*a)
|
||||
templ2=(-b-sqrt(b*b-4.*a*c))/(2.*a)
|
||||
if (abs(templ1)>abs(templ2))then
|
||||
newlSet(NBelem(eindex,nindex))=templ1
|
||||
else
|
||||
newlSet(NBelem(eindex,nindex))=templ2
|
||||
endif
|
||||
nstat(NBelem(eindex,nindex))=1
|
||||
endif
|
||||
enddo
|
||||
LSetLocal=newlSet
|
||||
end subroutine
|
268
Unpublished/XFEM2/Full2D/XCOR1D.m
Normal file
268
Unpublished/XFEM2/Full2D/XCOR1D.m
Normal file
|
@ -0,0 +1,268 @@
|
|||
function [] = XCOR1D()
|
||||
% MATLAB based 1-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Geometry
|
||||
len=1.;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% Generate Mesh
|
||||
numElem=4;
|
||||
charlen=len/numElem;
|
||||
ndCoords=linspace(0,len,numElem+1);
|
||||
numNodes=size(ndCoords,2);
|
||||
indx=1:numElem;
|
||||
elemNodes(:,1)=indx;
|
||||
elemNodes(:,2)=indx+1;
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
%storage
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:2
|
||||
crdn1=ndCoords(elemNodes(e,n));
|
||||
if crdn1<=dpos
|
||||
Tnew(2*elemNodes(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
Bound(1)=1.;
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% penalty term
|
||||
beta=100.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
eNodes=zeros(2*numNodes,1);
|
||||
% Get interface velocity
|
||||
d(1)=dpos+charlen;
|
||||
d(2)=dpos+3*charlen/4;
|
||||
d(3)=dpos+charlen/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=ndCoords(elemNodes(e,1));
|
||||
crdn2=ndCoords(elemNodes(e,2));
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 && d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(elemNodes(e,1)*2-1);
|
||||
tmp1b=Tnew(elemNodes(e,1)*2);
|
||||
tmp2a=Tnew(elemNodes(e,2)*2-1);
|
||||
tmp2b=Tnew(elemNodes(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
vel=0.5*(0.5/charlen)*(2*t(1)+t(2)-t(3)-2*t(4));
|
||||
vel=0.
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(2*ndof);
|
||||
Me=zeros(2*ndof);
|
||||
crdn1=ndCoords(elemNodes(e,1));
|
||||
crdn2=ndCoords(elemNodes(e,2));
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
enr=2;
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% enriched element
|
||||
eNodes(2*elemNodes(e,1))=1;
|
||||
eNodes(2*elemNodes(e,2))=1;
|
||||
enr=4;
|
||||
% get interface position on element
|
||||
point=(dpos-crdn1)/ajacob-1.;
|
||||
% devide element for sub integration
|
||||
len1=abs(-point-1.);
|
||||
len2=abs(1.-point);
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gpx(1)=-(len1/2.)/sqrt(3.)+mid1;
|
||||
gpx(2)=(len1/2.)/sqrt(3.)+mid1;
|
||||
gpx(3)=-(len2/2.)/sqrt(3.)+mid2;
|
||||
gpx(4)=(len2/2.)/sqrt(3.)+mid2;
|
||||
w(1)=(len1/2.);
|
||||
w(2)=(len1/2.);
|
||||
w(3)=(len2/2.);
|
||||
w(4)=(len2/2.);
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
gpx(1)=-1/sqrt(3.);
|
||||
gpx(2)=1/sqrt(3.);
|
||||
w(1)=1.;
|
||||
w(2)=1.;
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
c=gpx(i);
|
||||
phi(1)=(1.-c)/2.;
|
||||
phi(3)=(1.+c)/2.;
|
||||
term=theta(1)*phi(1)+theta(2)*phi(3);
|
||||
% if term<0
|
||||
% cond=0.00;
|
||||
% spec=0.001;
|
||||
% else
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
% end
|
||||
if enr==4
|
||||
phi(2)=phi(1)*(abs(term)-abs(theta(1)));
|
||||
phi(4)=phi(3)*(abs(term)-abs(theta(2)));
|
||||
else
|
||||
phi(2)=0.0;
|
||||
phi(4)=0.0;
|
||||
end
|
||||
phic(1)=-0.5;
|
||||
phic(3)=0.5;
|
||||
dterm=sign(term)*(phic(1)*theta(1)+phic(3)*theta(2));
|
||||
if enr==4
|
||||
phic(2)=phic(1)*(abs(term)-abs(theta(1)))+phi(1)*dterm;
|
||||
phic(4)=phic(3)*(abs(term)-abs(theta(2)))+phi(3)*dterm;
|
||||
else
|
||||
phic(2)=0.0;
|
||||
phic(4)=0.0;
|
||||
end
|
||||
phix(1)=phic(1)/ajacob;
|
||||
phix(2)=phic(2)/ajacob;
|
||||
phix(3)=phic(3)/ajacob;
|
||||
phix(4)=phic(4)/ajacob;
|
||||
we=ajacob*w(i);
|
||||
Ke=Ke+we*cond*phix'*phix;
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
if enr==5;
|
||||
Ke(1,2)=0.;
|
||||
Me(1,2)=0.;
|
||||
Ke(2,1)=0.;
|
||||
Me(2,1)=0.;
|
||||
Ke(1,4)=0.;
|
||||
Me(1,4)=0.;
|
||||
Ke(4,1)=0.;
|
||||
Me(4,1)=0.;
|
||||
Ke(3,2)=0.;
|
||||
Me(3,2)=0.;
|
||||
Ke(2,3)=0.;
|
||||
Me(2,3)=0.;
|
||||
Ke(4,3)=0.;
|
||||
Me(4,3)=0.;
|
||||
Ke(3,4)=0.;
|
||||
Me(3,4)=0.;
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==4;
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
pen=beta*(gm'*gm);
|
||||
pfL=beta*1*gm';
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(4);
|
||||
pfL=zeros(4,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum=2.*elemNodes(e,1)-1.;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum+j-1,gnum+i-1)=K(gnum+j-1,gnum+i-1)+Ke(j,i);
|
||||
M(gnum+j-1,gnum+i-1)=M(gnum+j-1,gnum+i-1)+Me(j,i);
|
||||
end
|
||||
pforce(gnum+i-1)=pforce(gnum+i-1)+pfL(i);
|
||||
end
|
||||
end
|
||||
%Remove NON-ENHANCED DOFs(Reduce Matrices)
|
||||
iindex=0.;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(i,2)==0 && eNodes(i)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
TR1(iindex)=Tnew(i);
|
||||
BR1(iindex)=Bound(i);
|
||||
pforceR1(iindex)=pforce(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(j,2)==0 && eNodes(j)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
jindex=jindex+1;
|
||||
MR1(iindex,jindex)=M(i,j);
|
||||
KR1(iindex,jindex)=K(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
AR1=KR1+MR1;
|
||||
SubR1=AR1*BR1';
|
||||
RHSR1=MR1*TR1'-SubR1+pforceR1';
|
||||
% Apply Boundary Conditions
|
||||
Biindex=0.;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
RHSR2(Biindex)=RHSR1(i);
|
||||
jindex=0;
|
||||
for j=1:iindex;
|
||||
check=0;
|
||||
if BR1(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR2(Biindex,jindex)=AR1(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR2^-1)*RHSR2';
|
||||
% Restore Matrices
|
||||
Biindex=0;
|
||||
for i=1:iindex;
|
||||
if BR1(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
TR1(i)=Tnewr(Biindex);
|
||||
end
|
||||
end
|
||||
iindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
check=0;
|
||||
if mod(i,2)==0 && eNodes(i)~=1
|
||||
check=1;
|
||||
end
|
||||
if check==0
|
||||
iindex=iindex+1;
|
||||
Tnew(i)=TR1(iindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
196
Unpublished/XFEM2/Full2D/XCOR1Db.m
Normal file
196
Unpublished/XFEM2/Full2D/XCOR1Db.m
Normal file
|
@ -0,0 +1,196 @@
|
|||
function [] = XCOR1Db()
|
||||
% MATLAB based 1-D XFEM Solver
|
||||
% J. Grogan (2012)
|
||||
clear all
|
||||
% Define Geometry
|
||||
len=1.;
|
||||
% Define Section Properties
|
||||
rho=1.;
|
||||
% Generate Mesh
|
||||
numElem=4;
|
||||
charlen=len/numElem;
|
||||
ndCoords=linspace(0,len,numElem+1);
|
||||
numNodes=size(ndCoords,2);
|
||||
indx=1:numElem;
|
||||
elemNodes(:,1)=indx;
|
||||
elemNodes(:,2)=indx+1;
|
||||
% dofs per node
|
||||
ndof=2;
|
||||
% initial interface position
|
||||
dpos=0.6;
|
||||
% Initial temperatures
|
||||
Tnew=zeros(numNodes*2,1);
|
||||
Bound=zeros(numNodes*2,1);
|
||||
%storage
|
||||
stored(1)=dpos;
|
||||
for e=1:numElem
|
||||
for n=1:2
|
||||
crdn1=ndCoords(elemNodes(e,n));
|
||||
if crdn1<=dpos
|
||||
Tnew(2*elemNodes(e,n)-1)=1.;
|
||||
end
|
||||
end
|
||||
end
|
||||
Bound(1)=1.;
|
||||
% Define Time Step
|
||||
dtime=0.01;
|
||||
tsteps=10;
|
||||
time=0.;
|
||||
% penalty term
|
||||
beta=100.;
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
% Get interface velocity
|
||||
d(1)=dpos+charlen;
|
||||
d(2)=dpos+3*charlen/4;
|
||||
d(3)=dpos+charlen/4;
|
||||
d(4)=dpos;
|
||||
for e=1:numElem
|
||||
crdn1=ndCoords(elemNodes(e,1));
|
||||
crdn2=ndCoords(elemNodes(e,2));
|
||||
for j=1:4
|
||||
if d(j)>=crdn1 && d(j)<crdn2
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
point=(d(j)-crdn1)/ajacob-1.;
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
tmp1a=Tnew(elemNodes(e,1)*2-1);
|
||||
tmp1b=Tnew(elemNodes(e,1)*2);
|
||||
tmp2a=Tnew(elemNodes(e,2)*2-1);
|
||||
tmp2b=Tnew(elemNodes(e,2)*2);
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
t(j)=gm(1)*tmp1a+gm(2)*tmp1b+gm(3)*tmp2a+gm(4)*tmp2b;
|
||||
end
|
||||
end
|
||||
end
|
||||
vel=0.5*(0.5/charlen)*(2*t(1)+t(2)-t(3)-2*t(4));
|
||||
vel=0.;
|
||||
% Update interface position
|
||||
dpos=dpos+vel*dtime;
|
||||
stored(ts+1)=dpos;
|
||||
K=zeros(numNodes*ndof,numNodes*ndof);
|
||||
M=zeros(numNodes*ndof,numNodes*ndof);
|
||||
pforce=zeros(numNodes*ndof,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(2*ndof);
|
||||
Me=zeros(2*ndof);
|
||||
crdn1=ndCoords(elemNodes(e,1));
|
||||
crdn2=ndCoords(elemNodes(e,2));
|
||||
theta(1)=abs(crdn1-dpos)*sign(crdn1-dpos);
|
||||
theta(2)=abs(crdn2-dpos)*sign(crdn2-dpos);
|
||||
enr=2;
|
||||
elen=abs(crdn2-crdn1);
|
||||
ajacob=elen/2.;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
% enriched element
|
||||
enr=4;
|
||||
% get interface position on element
|
||||
point=(dpos-crdn1)/ajacob-1.;
|
||||
% devide element for sub integration
|
||||
len1=abs(-point-1.);
|
||||
len2=abs(1.-point);
|
||||
mid1=-1+len1/2.;
|
||||
mid2=1-len2/2.;
|
||||
gpx(1)=-(len1/2.)/sqrt(3.)+mid1;
|
||||
gpx(2)=(len1/2.)/sqrt(3.)+mid1;
|
||||
gpx(3)=-(len2/2.)/sqrt(3.)+mid2;
|
||||
gpx(4)=(len2/2.)/sqrt(3.)+mid2;
|
||||
w(1)=(len1/2.);
|
||||
w(2)=(len1/2.);
|
||||
w(3)=(len2/2.);
|
||||
w(4)=(len2/2.);
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
gpx(1)=-1/sqrt(3.);
|
||||
gpx(2)=1/sqrt(3.);
|
||||
w(1)=1.;
|
||||
w(2)=1.;
|
||||
end
|
||||
% Loop Through Int Points
|
||||
for i=1:enr;
|
||||
c=gpx(i);
|
||||
phi(1)=(1.-c)/2.;
|
||||
phi(3)=(1.+c)/2.;
|
||||
term=theta(1)*phi(1)+theta(2)*phi(3);
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
phi(2)=phi(1)*(abs(term)-abs(theta(1)));
|
||||
phi(4)=phi(3)*(abs(term)-abs(theta(2)));
|
||||
phic(1)=-0.5;
|
||||
phic(3)=0.5;
|
||||
dterm=sign(term)*(phic(1)*theta(1)+phic(3)*theta(2));
|
||||
phic(2)=phic(1)*(abs(term)-abs(theta(1)))+phi(1)*dterm;
|
||||
phic(4)=phic(3)*(abs(term)-abs(theta(2)))+phi(3)*dterm;
|
||||
phix(1)=phic(1)/ajacob;
|
||||
phix(2)=phic(2)/ajacob;
|
||||
phix(3)=phic(3)/ajacob;
|
||||
phix(4)=phic(4)/ajacob;
|
||||
we=ajacob*w(i);
|
||||
Ke=Ke+we*cond*phix'*phix
|
||||
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
||||
end
|
||||
Me
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr==4;
|
||||
xi=point;
|
||||
gm(1)=(1.-xi)/2.;
|
||||
gm(3)=(1.+xi)/2.;
|
||||
term=theta(1)*gm(1)+theta(2)*gm(3);
|
||||
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
||||
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
||||
pen=beta*(gm'*gm);
|
||||
pfL=beta*1*gm';
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(4);
|
||||
pfL=zeros(4,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum=2.*elemNodes(e,1)-1.;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum+j-1,gnum+i-1)=K(gnum+j-1,gnum+i-1)+Ke(j,i);
|
||||
M(gnum+j-1,gnum+i-1)=M(gnum+j-1,gnum+i-1)+Me(j,i);
|
||||
end
|
||||
pforce(gnum+i-1)=pforce(gnum+i-1)+pfL(i);
|
||||
end
|
||||
end
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
M*Tnew;
|
||||
RHS=M*Tnew-Sub+pforce;
|
||||
% Apply Boundary Conditions
|
||||
Biindex=0.;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
RHSR(Biindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:ndof*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
AR(Biindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tnewr=(AR^-1)*RHSR';
|
||||
% Restore Matrices
|
||||
Biindex=0;
|
||||
for i=1:ndof*numNodes;
|
||||
if Bound(i)==0.;
|
||||
Biindex=Biindex+1;
|
||||
Tnew(i)=Tnewr(Biindex);
|
||||
end
|
||||
end
|
||||
Tnew
|
||||
end
|
||||
stored';
|
783
Unpublished/XFEM2/Full2D/XCOR_2D.asv
Normal file
783
Unpublished/XFEM2/Full2D/XCOR_2D.asv
Normal file
|
@ -0,0 +1,783 @@
|
|||
function []=XCOR_2D()
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=2;
|
||||
NumY=1;
|
||||
delX=1.;
|
||||
delY=1.;
|
||||
numElem=NumX*NumY;
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
Elength=(delX+delY)/2.;
|
||||
[Node,Element]=buildMesh(NumX,NumY,delX,delY);
|
||||
% Simulation Parameters
|
||||
rho=1.;
|
||||
Penalty=80.;
|
||||
dtImp=0.1;
|
||||
dtExp=0.01;
|
||||
tsteps=4;
|
||||
bandWidth=10.;
|
||||
epsilon=0.00001;
|
||||
visc=0.0005;
|
||||
% Get Initial Level Set
|
||||
LSetOld=initialLSet(Node,numNodes);
|
||||
% plotLSet(NumX,NumY,delX,delY,LSet);
|
||||
% Initial Conditions
|
||||
Temp=zeros(numNodes*2,1);
|
||||
for i=1:numNodes
|
||||
if LSetOld(i)<=0
|
||||
Temp(2*i-1)=1.;
|
||||
end
|
||||
end
|
||||
% Boundary Conditions
|
||||
Bound=zeros(numNodes*2,1);
|
||||
for i=1:numNodes
|
||||
if Node(i,1)<delX/10.
|
||||
Bound(2*i-1)=1.;
|
||||
end
|
||||
end
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
% Update Level Set
|
||||
LSetNew=updateLSet(Temp,Node,numNodes,Element,numElem,dtImp,dtExp,LSetOld,...
|
||||
Elength,bandWidth,epsilon,visc);
|
||||
% Solve for Temperature
|
||||
Temp=getTemp(Node,Element,numNodes,numElem,LSetNew,Bound,Temp,Penalty,rho,dtImp,LSetOld);
|
||||
LSetOld=LSetNew;
|
||||
LSetOld'
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Create a linear quadrilateral FE mesh
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [Node,Element]=buildMesh(NumX,NumY,delX,delY)
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% This function updates the level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [LSet]=updateLSet(Temp,Node,numNodes,Element,numElem,dtImp,dtExp,LSet,...
|
||||
Elength,bandWidth,epsilon,visc)
|
||||
% parameters
|
||||
charLen=epsilon*Elength;
|
||||
for tstep=1:floor(dtImp/dtExp)
|
||||
% Identify Narrow Band Elements and Get Local Level Set
|
||||
[NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal]=getNarrowBand(bandWidth,...
|
||||
Elength,LSet,Element,numElem,numNodes);
|
||||
% Identify Scalar Velocity on Nodes Crossed By Interface - F
|
||||
F=getF(Temp,LSetLocal,NBElems,NBNodes,NLocal,NBelem,Node,Elength);
|
||||
% Get 'Stiffness' Matrix - A
|
||||
A=getA(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal);
|
||||
% Apply BCs
|
||||
RHS=-A*F;
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:NBNodes
|
||||
if F(j)==0.
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if iindex>0
|
||||
% Solve for Fred
|
||||
Fred=(Ared^-1)*RHSred';
|
||||
% Get F
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
F(i)=Fred(iindex);
|
||||
end
|
||||
end
|
||||
end
|
||||
% Get Level Set Equation Terms
|
||||
[M,MGLS,f1,f2,f3]=getTerms(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal,visc,charLen,F);
|
||||
LSetLocal=LSetLocal-((((M+MGLS)^-1)*dtExp)*(f1+f2+f3))';
|
||||
% Reinitialize LS
|
||||
%LSetLocal=fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes,NBElems);
|
||||
for i=1:NBNodes
|
||||
LSet(NLocal(i))=LSetLocal(i);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Find elements in narrow band and create map between
|
||||
% global node labels and those in narrow band
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal]=getNarrowBand(bandWidth,...
|
||||
ELength,LSet,Element,numElem,numNodes)
|
||||
% Identify Narrow Band Elements
|
||||
NBElems=0;
|
||||
NBNodes=0;
|
||||
NGlobal=zeros(numNodes);
|
||||
for i=1:numElem
|
||||
check=0;
|
||||
for iNd=1:4
|
||||
if abs(LSet(Element(i,iNd)))<=bandWidth*ELength
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
% If an element is in the narrow band split it into triangles
|
||||
if check==1
|
||||
for j=1:4
|
||||
if NGlobal(Element(i,j))==0
|
||||
NBNodes=NBNodes+1;
|
||||
NGlobal(Element(i,j))=NBNodes;
|
||||
NLocal(NBNodes)=Element(i,j);
|
||||
end
|
||||
end
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,2));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,3));
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,3));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,4));
|
||||
end
|
||||
end
|
||||
% Get local Level Set
|
||||
for i=1:NBNodes
|
||||
LSetLocal(i)=LSet(NLocal(i));
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get Interface Normal Veloctiy 'F'
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function F=getF(Temp,LSetLocal,NBElems,NBNodes,NLocal,NBelem,Node,ELength)
|
||||
F=zeros(NBNodes,1);
|
||||
eStat=zeros(NBElems,1);
|
||||
nData=zeros(NBNodes,2);
|
||||
for i=1:NBElems
|
||||
for j=1:3
|
||||
L(j)=LSetLocal(NBelem(i,j));
|
||||
end
|
||||
x11=Node(NLocal(NBelem(i,1)),1);
|
||||
x12=Node(NLocal(NBelem(i,2)),1);
|
||||
x13=Node(NLocal(NBelem(i,3)),1);
|
||||
y11=Node(NLocal(NBelem(i,1)),2);
|
||||
y12=Node(NLocal(NBelem(i,2)),2);
|
||||
y13=Node(NLocal(NBelem(i,3)),2);
|
||||
count=0.;
|
||||
if sign(L(1)) ~= sign(L(2))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(1))/(abs(L(1))+abs(L(2)));
|
||||
xi(count)=f*(x12-x11)+x11;
|
||||
yi(count)=f*(y12-y11)+y11;
|
||||
end
|
||||
if sign(L(1)) ~= sign(L(3))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(1))/(abs(L(1))+abs(L(3)));
|
||||
xi(count)=f*(x13-x11)+x11;
|
||||
yi(count)=f*(y13-y11)+y11 ;
|
||||
end
|
||||
if sign(L(2)) ~= sign(L(3))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(2))/(abs(L(2))+abs(L(3)));
|
||||
xi(count)=f*(x13-x12)+x12;
|
||||
yi(count)=f*(y13-y12)+y12 ;
|
||||
end
|
||||
if eStat(i)==1
|
||||
n=[yi(2)-yi(1); xi(1)-xi(2)];
|
||||
n=n/norm(n);
|
||||
xd(1,1)=(xi(1)+xi(2))/2.;
|
||||
xd(1,2)=(yi(1)+yi(2))/2.;
|
||||
xd(2,1)=0.1*ELength*n(1)+xd(1,1);
|
||||
xd(2,2)=0.1*ELength*n(2)+xd(1,2);
|
||||
% Check if xd2 is in element
|
||||
v0(1)=x11;
|
||||
v0(2)=y11;
|
||||
v1(1)=x12-x11;
|
||||
v1(2)=y12-y11;
|
||||
v2(1)=x13-x11;
|
||||
v2(2)=y13-y11;
|
||||
v(1)=xd(2,1);
|
||||
v(2)=xd(2,2);
|
||||
ra=((v(1)*v2(2)-v2(1)*v(2))-(v0(1)*v2(2)-v2(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
rb=-((v(1)*v1(2)-v1(1)*v(2))-(v0(1)*v1(2)-v1(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
check=0;
|
||||
if ra>0. && rb>0. && ra+rb<1.
|
||||
index=i;
|
||||
x21=x11;
|
||||
x22=x12;
|
||||
x23=x13;
|
||||
y21=y11;
|
||||
y22=y12;
|
||||
y23=y13;
|
||||
else
|
||||
for j=1:NBElems
|
||||
tx1=Node(NLocal(NBelem(j,1)),1);
|
||||
tx2=Node(NLocal(NBelem(j,2)),1);
|
||||
tx3=Node(NLocal(NBelem(j,3)),1);
|
||||
ty1=Node(NLocal(NBelem(j,1)),2);
|
||||
ty2=Node(NLocal(NBelem(j,2)),2);
|
||||
ty3=Node(NLocal(NBelem(j,3)),2);
|
||||
v0(1)=tx1;
|
||||
v0(2)=ty1;
|
||||
v1(1)=tx2-tx1;
|
||||
v1(2)=ty2-ty1;
|
||||
v2(1)=tx3-tx1;
|
||||
v2(2)=ty3-ty1;
|
||||
v(1)=xd(2,1);
|
||||
v(2)=xd(2,2);
|
||||
ra=((v(1)*v2(2)-v2(1)*v(2))-(v0(1)*v2(2)-v2(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
rb=-((v(1)*v1(2)-v1(1)*v(2))-(v0(1)*v1(2)-v1(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
if ra>0. && rb>0. && ra+rb<1.
|
||||
index=j;
|
||||
x21=tx1;
|
||||
x22=tx2;
|
||||
x23=tx3;
|
||||
y21=ty1;
|
||||
y22=ty2;
|
||||
y23=ty3;
|
||||
end
|
||||
end
|
||||
end
|
||||
Ae1=0.5*((x12*y13-x13*y12)+(y12-y13)*x11+(x13-x12)*y11);
|
||||
Ae2=0.5*((x22*y23-x23*y22)+(y22-y23)*x21+(x23-x22)*y21);
|
||||
N1=(1./(2.*Ae))*((y2-y3)*(xd(j,1)-x2)+(x3-x2)*(xd(j,2)-y2));
|
||||
N2=(1./(2.*Ae))*((y3-y1)*(xd(j,1)-x3)+(x1-x3)*(xd(j,2)-y3));
|
||||
N3=(1./(2.*Ae))*((y1-y2)*(xd(j,1)-x1)+(x2-x1)*(xd(j,2)-y1));
|
||||
T1=Temp(2*NLocal(NBelem(i,1))-1);
|
||||
T2=Temp(2*NLocal(NBelem(i,2))-1);
|
||||
T3=Temp(2*NLocal(NBelem(i,3))-1);
|
||||
a1=Temp(2*NLocal(NBelem(i,1)));
|
||||
a2=Temp(2*NLocal(NBelem(i,2)));
|
||||
a3=Temp(2*NLocal(NBelem(i,3)));
|
||||
L1=LSetLocal(NBelem(i,1));
|
||||
L2=LSetLocal(NBelem(i,2));
|
||||
L3=LSetLocal(NBelem(i,3));
|
||||
LS=abs(N1*L1+L2*N2+L3*N3);
|
||||
p1=N1*(LS-abs(L1));
|
||||
p2=N2*(LS-abs(L2));
|
||||
p3=N3*(LS-abs(L3));
|
||||
T(j)=N1*T1+N2*T2+N3*T3+p1*a1+p2*a2+p3*a3;
|
||||
end
|
||||
gradT=(T(2)-T(1))/(0.1*ELength);
|
||||
for j=1:3
|
||||
nData(NBelem(i,j),1)=nData(NBelem(i,j),1)+1.;
|
||||
nData(NBelem(i,j),2)=nData(NBelem(i,j),2)+0.1*gradT;
|
||||
end
|
||||
end
|
||||
end
|
||||
for i=1:NBNodes
|
||||
if nData(i,1)>0
|
||||
F(i)=nData(i,2)/nData(i,1);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get 'Stiffness' Matrix 'A'
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [A]=getA(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal)
|
||||
A=zeros(NBNodes);
|
||||
for i=1:NBElems
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
AfL=zeros(3);
|
||||
AfLGLS=zeros(3);
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=2*abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))];
|
||||
set=phi*nodalLset;
|
||||
delset=delphi*nodalLset;
|
||||
AfL=AfL+(phi'*sign(set))*(delset'*delphi)/3.;
|
||||
AfLGLS=AfLGLS+(delphi'*delset)*(1./norm(delset))*(delset'*delphi)/3.;
|
||||
end
|
||||
sum=AfL+AfLGLS;
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
A(NBelem(i,j),NBelem(i,k))=A(NBelem(i,j),NBelem(i,k))+sum(j,k);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get terms for LS equation
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [M,MGLS,f1,f2,f3]=getTerms(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal,visc,charLen,F)
|
||||
M=zeros(NBNodes);
|
||||
MGLS=zeros(NBNodes);
|
||||
f1=zeros(NBNodes,1);
|
||||
f2=zeros(NBNodes,1);
|
||||
f3=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
ML=zeros(3);
|
||||
MGLSL=zeros(3);
|
||||
f1L=zeros(3,1);
|
||||
f2L=zeros(3,1);
|
||||
f3L=zeros(3,1);
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))];
|
||||
nodalF=[F(NBelem(i,1));F(NBelem(i,2));F(NBelem(i,3))];
|
||||
delset=delphi*nodalLset;
|
||||
Floc=phi*nodalF;
|
||||
ML=ML+(phi'*phi)/3.;
|
||||
MGLSL=MGLSL+((delphi'*(delset/norm(delset)))*Floc*(charLen/abs(Floc)))*phi/3.;
|
||||
f1L=f1L+phi'*Floc*norm(delset)/3.;
|
||||
f2L=f2L+(delphi'*(delset/norm(delset))*Floc)*(charLen/abs(Floc))*Floc*norm(delset)/3.;
|
||||
vs=charLen*((abs(visc+Floc*norm(delset)))/(norm(Floc*delset)+charLen));
|
||||
f3L=f3L+vs*delphi'*delset/3.;
|
||||
end
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
M(NBelem(i,j),NBelem(i,k))=M(NBelem(i,j),NBelem(i,k))+ML(j,k);
|
||||
MGLS(NBelem(i,j),NBelem(i,k))=MGLS(NBelem(i,j),NBelem(i,k))+MGLSL(j,k);
|
||||
end
|
||||
f1(NBelem(i,k))=f1(NBelem(i,k))+f1L(k);
|
||||
f2(NBelem(i,k))=f2(NBelem(i,k))+f2L(k);
|
||||
f3(NBelem(i,k))=f3(NBelem(i,k))+f3L(k);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Use Fast March Method to Reinitialize LS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function LSetLocal=fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes,NBElems)
|
||||
newlSet=LSetLocal;
|
||||
% Reinitialize LS
|
||||
nstat=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
for j=1:3
|
||||
L(j)=sign(LSetLocal(NBelem(i,j)));
|
||||
end
|
||||
if L(1) ~= L(2) || L(1) ~= L(3)
|
||||
for j=1:3
|
||||
nstat(NBelem(i,j))=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
maincheck=0;
|
||||
while(maincheck==0)
|
||||
lmin=1000.;
|
||||
avlmin=1000.;
|
||||
eindex=0;
|
||||
nindex=0;
|
||||
maincheck=1;
|
||||
for i=1:NBElems
|
||||
if nstat(NBelem(i,1))+nstat(NBelem(i,2))+nstat(NBelem(i,3))==2
|
||||
maincheck=0;
|
||||
check=0;
|
||||
ltot=0.;
|
||||
for j=1:3
|
||||
if nstat(NBelem(i,j))==0
|
||||
if abs(LSetLocal(NBelem(i,j)))<=lmin
|
||||
check=1;
|
||||
tempindex=j;
|
||||
end
|
||||
end
|
||||
ltot=ltot+abs(LSetLocal(NBelem(i,j)));
|
||||
end
|
||||
if check==1 && ltot/3.<=avlmin
|
||||
eindex=i;
|
||||
nindex=tempindex;
|
||||
lmin=LSetLocal(NBelem(eindex,nindex));
|
||||
avlmin=ltot/3.;
|
||||
end
|
||||
end
|
||||
end
|
||||
if maincheck==0
|
||||
% Find New LS for point
|
||||
xp=Node(NLocal(NBelem(eindex,nindex)),1);
|
||||
yp=Node(NLocal(NBelem(eindex,nindex)),2);
|
||||
count=0;
|
||||
for i=1:3
|
||||
if i~=nindex
|
||||
count=count+1;
|
||||
x(count)=Node(NLocal(NBelem(eindex,i)),1);
|
||||
y(count)=Node(NLocal(NBelem(eindex,i)),2);
|
||||
lloc(count)=newlSet(NBelem(eindex,i));
|
||||
end
|
||||
end
|
||||
delxa=x(1)-xp;
|
||||
delya=y(1)-yp;
|
||||
delxb=x(2)-xp;
|
||||
delyb=y(2)-yp;
|
||||
N=[delxa delya; delxb delyb];
|
||||
M=N^-1;
|
||||
A=(M(1)*M(1)+M(2)*M(2));
|
||||
B=(M(3)*M(3)+M(4)*M(4));
|
||||
C=2.*(M(1)*M(3)+M(2)*M(4));
|
||||
a=A+B+C;
|
||||
b=-2.*lloc(1)*A-2.*lloc(2)*B-C*(lloc(1)+lloc(2));
|
||||
c=lloc(1)*lloc(1)*A+lloc(2)*lloc(2)*B+lloc(1)*lloc(2)*C-1.;
|
||||
templ1=(-b+sqrt(b*b-4.*a*c))/(2.*a);
|
||||
templ2=(-b-sqrt(b*b-4.*a*c))/(2.*a);
|
||||
if abs(templ1)>abs(templ2)
|
||||
newlSet(NBelem(eindex,nindex))=templ1;
|
||||
else
|
||||
newlSet(NBelem(eindex,nindex))=templ2;
|
||||
end
|
||||
nstat(NBelem(eindex,nindex))=1;
|
||||
end
|
||||
end
|
||||
LSetLocal=newlSet;
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Solve Implicit Porblem to Get Temperature
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function Temp=getTemp(Node,Element,numNodes,numElem,LSet,Bound,Temp,Penalty,rho,dtImp,LSetOld)
|
||||
K=zeros(numNodes*2,numNodes*2);
|
||||
M=zeros(numNodes*2,numNodes*2);
|
||||
MStar=zeros(numNodes*2,numNodes*2);
|
||||
pforce=zeros(numNodes*2,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(8);
|
||||
Me=zeros(8);
|
||||
MeStar=zeros(8);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=LSet(Element(e,icrd));
|
||||
thetaO(icrd)=LSetOld(Element(e,icrd));
|
||||
end
|
||||
check=0;
|
||||
for i=1:3
|
||||
for j=i+1:4
|
||||
if sign(theta(1))~=sign(theta(j))
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==1
|
||||
% possible enriched element
|
||||
npart=10;
|
||||
enr=npart*npart;
|
||||
for sdx=1:npart
|
||||
for sdy=1:npart
|
||||
midx=-1.-1./npart+(2./npart)*sdx;
|
||||
midy=-1.-1./npart+(2./npart)*sdy;
|
||||
subindex=npart*(sdy-1)+sdx;
|
||||
gpos=1./(sqrt(3.)*npart);
|
||||
gx(subindex,1)=midx-gpos;
|
||||
gx(subindex,2)=midx+gpos;
|
||||
gx(subindex,3)=midx+gpos;
|
||||
gx(subindex,4)=midx-gpos;
|
||||
hx(subindex,1)=midy-gpos;
|
||||
hx(subindex,2)=midy-gpos;
|
||||
hx(subindex,3)=midy+gpos;
|
||||
hx(subindex,4)=midy+gpos;
|
||||
end
|
||||
end
|
||||
% check if int points are on different sides of front
|
||||
check=0;
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
phiO=phi;
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
if i==1 && j==1
|
||||
sgn=sign(iLS);
|
||||
else
|
||||
if sign(iLS)~=sgn
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==0
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
phiO=phi;
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
iLSO=thetaO(1)*phi(1)+thetaO(2)*phi(3)+thetaO(3)*phi(5)+thetaO(4)*phi(7);
|
||||
if iLS<0.
|
||||
cond=0.;
|
||||
spec=0.01;
|
||||
else
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
end
|
||||
if iLSO<0.
|
||||
specO=0.01;
|
||||
else
|
||||
specO=1.;
|
||||
end
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
phiO(2*iter)=phiO(2*iter-1)*(abs(iLSO)-abs(thetaO(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=djac;
|
||||
Ke=Ke+(we*cond*(phix'*phix+phiy'*phiy))/double(enr);
|
||||
Me=Me+((we*rho*spec*phi'*phi)/dtImp)/double(enr);
|
||||
MeStar=MeStar+((we*rho*specO*phi'*phiO)/dtImp)/double(enr);
|
||||
end
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr>1;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
% pen=zeros(8);
|
||||
% pfL=zeros(8,1);
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
MStar(gnum(j),gnum(i))=MStar(gnum(j),gnum(i))+MeStar(2*j-1,2*i-1);
|
||||
MStar(gnum(j)+1,gnum(i)+1)=MStar(gnum(j)+1,gnum(i)+1)+MeStar(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
RHS=MStar*Temp;
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
iindex=0;
|
||||
for i=1:2*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i)-Sub(i)+pforce(i);
|
||||
jindex=0;
|
||||
for j=1:2*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tempr=(Ared^-1)*RHSred';
|
||||
iindex=0;
|
||||
for i=1:2*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Temp(i)=Tempr(iindex);
|
||||
end
|
||||
end
|
||||
Temp
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Generates the initial level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [LSet]=initialLSet(Node,numNodes)
|
||||
%centx=4.;
|
||||
%centy=4.;
|
||||
%rad=2.1;
|
||||
%for i=1:numNodes;
|
||||
% dist=sqrt((Node(i,1)-centx)*(Node(i,1)-centx)+(Node(i,2)-centy)*(Node(i,2)-centy));
|
||||
% LSet(i)=dist-rad;
|
||||
%end
|
||||
for i=1:numNodes;
|
||||
dist=Node(i,1)-1.1;
|
||||
LSet(i)=dist;
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Plot the level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function []=plotLSet(NumX,NumY,delX,delY,LSet)
|
||||
[X Y]=meshgrid(0:delX:delX*NumX,0:delY:delY*NumY);
|
||||
Z=zeros(NumX+1,NumY+1);
|
||||
for i=1:(NumX+1)*(NumY+1)
|
||||
Z(i)=LSet(i);
|
||||
end
|
||||
surf(X,Y,Z)
|
||||
end
|
||||
|
801
Unpublished/XFEM2/Full2D/XCOR_2D.m
Normal file
801
Unpublished/XFEM2/Full2D/XCOR_2D.m
Normal file
|
@ -0,0 +1,801 @@
|
|||
function []=XCOR_2D()
|
||||
clear all
|
||||
% Define Mesh
|
||||
NumX=10;
|
||||
NumY=1;
|
||||
delX=1.;
|
||||
delY=1.;
|
||||
numElem=NumX*NumY;
|
||||
numNodes=(NumX+1)*(NumY+1);
|
||||
Elength=(delX+delY)/2.;
|
||||
[Node,Element]=buildMesh(NumX,NumY,delX,delY);
|
||||
% Simulation Parameters
|
||||
rho=1.;
|
||||
Penalty=200.;
|
||||
dtImp=0.01;
|
||||
dtExp=0.001;
|
||||
tsteps=10;
|
||||
bandWidth=10.;
|
||||
epsilon=0.00001;
|
||||
visc=0.0005;
|
||||
% Get Initial Level Set
|
||||
LSetOld=initialLSet(Node,numNodes);
|
||||
% plotLSet(NumX,NumY,delX,delY,LSet);
|
||||
% Initial Conditions
|
||||
Temp=zeros(numNodes*2,1);
|
||||
for i=1:numNodes
|
||||
if LSetOld(i)<=0
|
||||
Temp(2*i-1)=1.;
|
||||
end
|
||||
end
|
||||
% Boundary Conditions
|
||||
Bound=zeros(numNodes*2,1);
|
||||
for i=1:numNodes
|
||||
if Node(i,1)<delX/10.
|
||||
Bound(2*i-1)=1.;
|
||||
end
|
||||
end
|
||||
% Loop through time steps
|
||||
for ts=1:tsteps
|
||||
% Update Level Set
|
||||
LSetNew=updateLSet(Temp,Node,numNodes,Element,numElem,dtImp,dtExp,LSetOld,...
|
||||
Elength,bandWidth,epsilon,visc);
|
||||
% Solve for Temperature
|
||||
Temp=getTemp(Node,Element,numNodes,numElem,LSetNew,Bound,Temp,Penalty,rho,dtImp,LSetOld);
|
||||
LSetOld=LSetNew;
|
||||
LSetOld'
|
||||
POUT(ts)=LSetOld(1);
|
||||
end
|
||||
POUT';
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Create a linear quadrilateral FE mesh
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [Node,Element]=buildMesh(NumX,NumY,delX,delY)
|
||||
for j=1:NumY+1
|
||||
for i=1:NumX+1
|
||||
index=i+(NumX+1)*(j-1);
|
||||
Node(index,1)=single((i-1.))*delX;
|
||||
Node(index,2)=single((j-1.))*delY;
|
||||
end
|
||||
end
|
||||
for j=1:NumY
|
||||
for i=1:NumX
|
||||
index=i+NumX*(j-1);
|
||||
Element(index,1)=i+(NumX+1)*(j-1);
|
||||
Element(index,2)=i+(NumX+1)*(j-1)+1;
|
||||
Element(index,3)=i+(NumX+1)*(j)+1;
|
||||
Element(index,4)=i+(NumX+1)*(j);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% This function updates the level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [LSet]=updateLSet(Temp,Node,numNodes,Element,numElem,dtImp,dtExp,LSet,...
|
||||
Elength,bandWidth,epsilon,visc)
|
||||
% parameters
|
||||
charLen=epsilon*Elength;
|
||||
for tstep=1:floor(dtImp/dtExp)
|
||||
% Identify Narrow Band Elements and Get Local Level Set
|
||||
[NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal]=getNarrowBand(bandWidth,...
|
||||
Elength,LSet,Element,numElem,numNodes);
|
||||
% Identify Scalar Velocity on Nodes Crossed By Interface - F
|
||||
F=getF(Temp,LSetLocal,NBElems,NBNodes,NLocal,NBelem,Node,Elength);
|
||||
% Get 'Stiffness' Matrix - A
|
||||
A=getA(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal);
|
||||
% Apply BCs
|
||||
RHS=-A*F;
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i);
|
||||
jindex=0;
|
||||
for j=1:NBNodes
|
||||
if F(j)==0.
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if iindex>0
|
||||
% Solve for Fred
|
||||
Fred=(Ared^-1)*RHSred';
|
||||
% Get F
|
||||
iindex=0;
|
||||
for i=1:NBNodes
|
||||
if F(i)==0.
|
||||
iindex=iindex+1;
|
||||
F(i)=Fred(iindex);
|
||||
end
|
||||
end
|
||||
end
|
||||
% Get Level Set Equation Terms
|
||||
[M,MGLS,f1,f2,f3]=getTerms(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal,visc,charLen,F);
|
||||
LSetLocal=LSetLocal-((((M+MGLS)^-1)*dtExp)*(f1+f2+f3))';
|
||||
% Reinitialize LS
|
||||
%LSetLocal=fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes,NBElems);
|
||||
for i=1:NBNodes
|
||||
LSet(NLocal(i))=LSetLocal(i);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Find elements in narrow band and create map between
|
||||
% global node labels and those in narrow band
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [NBelem,NBElems,NGlobal,NLocal,NBNodes,LSetLocal]=getNarrowBand(bandWidth,...
|
||||
ELength,LSet,Element,numElem,numNodes)
|
||||
% Identify Narrow Band Elements
|
||||
NBElems=0;
|
||||
NBNodes=0;
|
||||
NGlobal=zeros(numNodes);
|
||||
for i=1:numElem
|
||||
check=0;
|
||||
for iNd=1:4
|
||||
if abs(LSet(Element(i,iNd)))<=bandWidth*ELength
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
% If an element is in the narrow band split it into triangles
|
||||
if check==1
|
||||
for j=1:4
|
||||
if NGlobal(Element(i,j))==0
|
||||
NBNodes=NBNodes+1;
|
||||
NGlobal(Element(i,j))=NBNodes;
|
||||
NLocal(NBNodes)=Element(i,j);
|
||||
end
|
||||
end
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,2));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,3));
|
||||
NBElems=NBElems+1;
|
||||
NBelem(NBElems,1)=NGlobal(Element(i,1));
|
||||
NBelem(NBElems,2)=NGlobal(Element(i,3));
|
||||
NBelem(NBElems,3)=NGlobal(Element(i,4));
|
||||
end
|
||||
end
|
||||
% Get local Level Set
|
||||
for i=1:NBNodes
|
||||
LSetLocal(i)=LSet(NLocal(i));
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get Interface Normal Veloctiy 'F'
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function F=getF(Temp,LSetLocal,NBElems,NBNodes,NLocal,NBelem,Node,ELength)
|
||||
F=zeros(NBNodes,1);
|
||||
eStat=zeros(NBElems,1);
|
||||
nData=zeros(NBNodes,2);
|
||||
for i=1:NBElems
|
||||
for j=1:3
|
||||
L(j)=LSetLocal(NBelem(i,j));
|
||||
end
|
||||
x11=Node(NLocal(NBelem(i,1)),1);
|
||||
x12=Node(NLocal(NBelem(i,2)),1);
|
||||
x13=Node(NLocal(NBelem(i,3)),1);
|
||||
y11=Node(NLocal(NBelem(i,1)),2);
|
||||
y12=Node(NLocal(NBelem(i,2)),2);
|
||||
y13=Node(NLocal(NBelem(i,3)),2);
|
||||
count=0.;
|
||||
if sign(L(1)) ~= sign(L(2))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(1))/(abs(L(1))+abs(L(2)));
|
||||
xi(count)=f*(x12-x11)+x11;
|
||||
yi(count)=f*(y12-y11)+y11;
|
||||
end
|
||||
if sign(L(1)) ~= sign(L(3))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(1))/(abs(L(1))+abs(L(3)));
|
||||
xi(count)=f*(x13-x11)+x11;
|
||||
yi(count)=f*(y13-y11)+y11 ;
|
||||
end
|
||||
if sign(L(2)) ~= sign(L(3))
|
||||
eStat(i)=1;
|
||||
count=count+1;
|
||||
f=abs(L(2))/(abs(L(2))+abs(L(3)));
|
||||
xi(count)=f*(x13-x12)+x12;
|
||||
yi(count)=f*(y13-y12)+y12 ;
|
||||
end
|
||||
if eStat(i)==1
|
||||
n=[yi(2)-yi(1); xi(1)-xi(2)];
|
||||
n=n/norm(n);
|
||||
xd(1,1)=(xi(1)+xi(2))/2.;
|
||||
xd(1,2)=(yi(1)+yi(2))/2.;
|
||||
xd(2,1)=0.15*ELength*n(1)+xd(1,1);
|
||||
xd(2,2)=0.15*ELength*n(2)+xd(1,2);
|
||||
% Check if xd2 is in element
|
||||
v0(1)=x11;
|
||||
v0(2)=y11;
|
||||
v1(1)=x12-x11;
|
||||
v1(2)=y12-y11;
|
||||
v2(1)=x13-x11;
|
||||
v2(2)=y13-y11;
|
||||
v(1)=xd(2,1);
|
||||
v(2)=xd(2,2);
|
||||
ra=((v(1)*v2(2)-v2(1)*v(2))-(v0(1)*v2(2)-v2(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
rb=-((v(1)*v1(2)-v1(1)*v(2))-(v0(1)*v1(2)-v1(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
check=0;
|
||||
if ra>0. && rb>0. && ra+rb<1.
|
||||
index=i;
|
||||
x21=x11;
|
||||
x22=x12;
|
||||
x23=x13;
|
||||
y21=y11;
|
||||
y22=y12;
|
||||
y23=y13;
|
||||
else
|
||||
for j=1:NBElems
|
||||
tx1=Node(NLocal(NBelem(j,1)),1);
|
||||
tx2=Node(NLocal(NBelem(j,2)),1);
|
||||
tx3=Node(NLocal(NBelem(j,3)),1);
|
||||
ty1=Node(NLocal(NBelem(j,1)),2);
|
||||
ty2=Node(NLocal(NBelem(j,2)),2);
|
||||
ty3=Node(NLocal(NBelem(j,3)),2);
|
||||
v0(1)=tx1;
|
||||
v0(2)=ty1;
|
||||
v1(1)=tx2-tx1;
|
||||
v1(2)=ty2-ty1;
|
||||
v2(1)=tx3-tx1;
|
||||
v2(2)=ty3-ty1;
|
||||
v(1)=xd(2,1);
|
||||
v(2)=xd(2,2);
|
||||
ra=((v(1)*v2(2)-v2(1)*v(2))-(v0(1)*v2(2)-v2(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
rb=-((v(1)*v1(2)-v1(1)*v(2))-(v0(1)*v1(2)-v1(1)*v0(2)))/(v1(1)*v2(2)-v2(1)*v1(2));
|
||||
if ra>0. && rb>0. && ra+rb<1.
|
||||
index=j;
|
||||
x21=tx1;
|
||||
x22=tx2;
|
||||
x23=tx3;
|
||||
y21=ty1;
|
||||
y22=ty2;
|
||||
y23=ty3;
|
||||
end
|
||||
end
|
||||
end
|
||||
Ae=0.5*((x12*y13-x13*y12)+(y12-y13)*x11+(x13-x12)*y11);
|
||||
N1=(1./(2.*Ae))*((y12-y13)*(xd(1,1)-x12)+(x13-x12)*(xd(1,2)-y12));
|
||||
N2=(1./(2.*Ae))*((y13-y11)*(xd(1,1)-x13)+(x11-x13)*(xd(1,2)-y13));
|
||||
N3=(1./(2.*Ae))*((y11-y12)*(xd(1,1)-x11)+(x12-x11)*(xd(1,2)-y11));
|
||||
T1=Temp(2*NLocal(NBelem(i,1))-1);
|
||||
T2=Temp(2*NLocal(NBelem(i,2))-1);
|
||||
T3=Temp(2*NLocal(NBelem(i,3))-1);
|
||||
a1=Temp(2*NLocal(NBelem(i,1)));
|
||||
a2=Temp(2*NLocal(NBelem(i,2)));
|
||||
a3=Temp(2*NLocal(NBelem(i,3)));
|
||||
L1=LSetLocal(NBelem(i,1));
|
||||
L2=LSetLocal(NBelem(i,2));
|
||||
L3=LSetLocal(NBelem(i,3));
|
||||
LS=abs(N1*L1+L2*N2+L3*N3);
|
||||
p1=N1*(LS-abs(L1));
|
||||
p2=N2*(LS-abs(L2));
|
||||
p3=N3*(LS-abs(L3));
|
||||
T(1)=N1*T1+N2*T2+N3*T3+p1*a1+p2*a2+p3*a3;
|
||||
Ae=0.5*((x22*y23-x23*y22)+(y22-y23)*x21+(x23-x22)*y21);
|
||||
N1=(1./(2.*Ae))*((y22-y23)*(xd(2,1)-x22)+(x23-x22)*(xd(2,2)-y22));
|
||||
N2=(1./(2.*Ae))*((y23-y21)*(xd(2,1)-x23)+(x21-x23)*(xd(2,2)-y23));
|
||||
N3=(1./(2.*Ae))*((y21-y22)*(xd(2,1)-x21)+(x22-x21)*(xd(2,2)-y21));
|
||||
T1=Temp(2*NLocal(NBelem(index,1))-1);
|
||||
T2=Temp(2*NLocal(NBelem(index,2))-1);
|
||||
T3=Temp(2*NLocal(NBelem(index,3))-1);
|
||||
a1=Temp(2*NLocal(NBelem(index,1)));
|
||||
a2=Temp(2*NLocal(NBelem(index,2)));
|
||||
a3=Temp(2*NLocal(NBelem(index,3)));
|
||||
L1=LSetLocal(NBelem(index,1));
|
||||
L2=LSetLocal(NBelem(index,2));
|
||||
L3=LSetLocal(NBelem(index,3));
|
||||
LS=abs(N1*L1+L2*N2+L3*N3);
|
||||
p1=N1*(LS-abs(L1));
|
||||
p2=N2*(LS-abs(L2));
|
||||
p3=N3*(LS-abs(L3));
|
||||
T(2)=N1*T1+N2*T2+N3*T3+p1*a1+p2*a2+p3*a3
|
||||
gradT=(T(2)-T(1))/(0.15*ELength);
|
||||
for j=1:3
|
||||
nData(NBelem(i,j),1)=nData(NBelem(i,j),1)+1.;
|
||||
nData(NBelem(i,j),2)=nData(NBelem(i,j),2)+0.1*gradT;
|
||||
end
|
||||
end
|
||||
end
|
||||
for i=1:NBNodes
|
||||
if nData(i,1)>0
|
||||
F(i)=nData(i,2)/nData(i,1);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get 'Stiffness' Matrix 'A'
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [A]=getA(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal)
|
||||
A=zeros(NBNodes);
|
||||
for i=1:NBElems
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
AfL=zeros(3);
|
||||
AfLGLS=zeros(3);
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=2*abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))];
|
||||
set=phi*nodalLset;
|
||||
delset=delphi*nodalLset;
|
||||
AfL=AfL+(phi'*sign(set))*(delset'*delphi)/3.;
|
||||
AfLGLS=AfLGLS+(delphi'*delset)*(1./norm(delset))*(delset'*delphi)/3.;
|
||||
end
|
||||
sum=AfL+AfLGLS;
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
A(NBelem(i,j),NBelem(i,k))=A(NBelem(i,j),NBelem(i,k))+sum(j,k);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Get terms for LS equation
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [M,MGLS,f1,f2,f3]=getTerms(Node,NLocal,NBelem,NBNodes,NBElems,LSetLocal,visc,charLen,F)
|
||||
M=zeros(NBNodes);
|
||||
MGLS=zeros(NBNodes);
|
||||
f1=zeros(NBNodes,1);
|
||||
f2=zeros(NBNodes,1);
|
||||
f3=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
ML=zeros(3);
|
||||
MGLSL=zeros(3);
|
||||
f1L=zeros(3,1);
|
||||
f2L=zeros(3,1);
|
||||
f3L=zeros(3,1);
|
||||
gx(1)=2./3.;
|
||||
gx(2)=1./6.;
|
||||
gx(3)=1./6.;
|
||||
hx(1)=1./6.;
|
||||
hx(2)=1./6.;
|
||||
hx(3)=2./3.;
|
||||
x1=Node(NLocal(NBelem(i,1)),1);
|
||||
y1=Node(NLocal(NBelem(i,1)),2);
|
||||
x2=Node(NLocal(NBelem(i,2)),1);
|
||||
y2=Node(NLocal(NBelem(i,2)),2);
|
||||
x3=Node(NLocal(NBelem(i,3)),1);
|
||||
y3=Node(NLocal(NBelem(i,3)),2);
|
||||
for j=1:3
|
||||
g=gx(j);
|
||||
h=hx(j);
|
||||
phi(1)=1.-g-h;
|
||||
phi(2)=g;
|
||||
phi(3)=h;
|
||||
phig(1)=-1.;
|
||||
phig(2)=1.;
|
||||
phig(3)=0.;
|
||||
phih(1)=-1.;
|
||||
phih(2)=0.;
|
||||
phih(3)=1.;
|
||||
djac=abs(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2));
|
||||
for k=1:3
|
||||
phix(k)=(1./djac)*((-y1+y3)*phig(k)+(y1-y2)*phih(k));
|
||||
phiy(k)=(1./djac)*((x1-x3)*phig(k)+(-x1+x2)*phih(k));
|
||||
end
|
||||
delphi=[phix;phiy];
|
||||
nodalLset=[LSetLocal(NBelem(i,1));LSetLocal(NBelem(i,2));LSetLocal(NBelem(i,3))];
|
||||
nodalF=[F(NBelem(i,1));F(NBelem(i,2));F(NBelem(i,3))];
|
||||
delset=delphi*nodalLset;
|
||||
Floc=phi*nodalF;
|
||||
ML=ML+(phi'*phi)/3.;
|
||||
MGLSL=MGLSL+((delphi'*(delset/norm(delset)))*Floc*(charLen/abs(Floc)))*phi/3.;
|
||||
f1L=f1L+phi'*Floc*norm(delset)/3.;
|
||||
f2L=f2L+(delphi'*(delset/norm(delset))*Floc)*(charLen/abs(Floc))*Floc*norm(delset)/3.;
|
||||
vs=charLen*((abs(visc+Floc*norm(delset)))/(norm(Floc*delset)+charLen));
|
||||
f3L=f3L+vs*delphi'*delset/3.;
|
||||
end
|
||||
for k=1:3;
|
||||
for j=1:3;
|
||||
M(NBelem(i,j),NBelem(i,k))=M(NBelem(i,j),NBelem(i,k))+ML(j,k);
|
||||
MGLS(NBelem(i,j),NBelem(i,k))=MGLS(NBelem(i,j),NBelem(i,k))+MGLSL(j,k);
|
||||
end
|
||||
f1(NBelem(i,k))=f1(NBelem(i,k))+f1L(k);
|
||||
f2(NBelem(i,k))=f2(NBelem(i,k))+f2L(k);
|
||||
f3(NBelem(i,k))=f3(NBelem(i,k))+f3L(k);
|
||||
end
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Use Fast March Method to Reinitialize LS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function LSetLocal=fastMarch(LSetLocal,NBelem,Node,NLocal,NBNodes,NBElems)
|
||||
newlSet=LSetLocal;
|
||||
% Reinitialize LS
|
||||
nstat=zeros(NBNodes,1);
|
||||
for i=1:NBElems
|
||||
for j=1:3
|
||||
L(j)=sign(LSetLocal(NBelem(i,j)));
|
||||
end
|
||||
if L(1) ~= L(2) || L(1) ~= L(3)
|
||||
for j=1:3
|
||||
nstat(NBelem(i,j))=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
maincheck=0;
|
||||
while(maincheck==0)
|
||||
lmin=1000.;
|
||||
avlmin=1000.;
|
||||
eindex=0;
|
||||
nindex=0;
|
||||
maincheck=1;
|
||||
for i=1:NBElems
|
||||
if nstat(NBelem(i,1))+nstat(NBelem(i,2))+nstat(NBelem(i,3))==2
|
||||
maincheck=0;
|
||||
check=0;
|
||||
ltot=0.;
|
||||
for j=1:3
|
||||
if nstat(NBelem(i,j))==0
|
||||
if abs(LSetLocal(NBelem(i,j)))<=lmin
|
||||
check=1;
|
||||
tempindex=j;
|
||||
end
|
||||
end
|
||||
ltot=ltot+abs(LSetLocal(NBelem(i,j)));
|
||||
end
|
||||
if check==1 && ltot/3.<=avlmin
|
||||
eindex=i;
|
||||
nindex=tempindex;
|
||||
lmin=LSetLocal(NBelem(eindex,nindex));
|
||||
avlmin=ltot/3.;
|
||||
end
|
||||
end
|
||||
end
|
||||
if maincheck==0
|
||||
% Find New LS for point
|
||||
xp=Node(NLocal(NBelem(eindex,nindex)),1);
|
||||
yp=Node(NLocal(NBelem(eindex,nindex)),2);
|
||||
count=0;
|
||||
for i=1:3
|
||||
if i~=nindex
|
||||
count=count+1;
|
||||
x(count)=Node(NLocal(NBelem(eindex,i)),1);
|
||||
y(count)=Node(NLocal(NBelem(eindex,i)),2);
|
||||
lloc(count)=newlSet(NBelem(eindex,i));
|
||||
end
|
||||
end
|
||||
delxa=x(1)-xp;
|
||||
delya=y(1)-yp;
|
||||
delxb=x(2)-xp;
|
||||
delyb=y(2)-yp;
|
||||
N=[delxa delya; delxb delyb];
|
||||
M=N^-1;
|
||||
A=(M(1)*M(1)+M(2)*M(2));
|
||||
B=(M(3)*M(3)+M(4)*M(4));
|
||||
C=2.*(M(1)*M(3)+M(2)*M(4));
|
||||
a=A+B+C;
|
||||
b=-2.*lloc(1)*A-2.*lloc(2)*B-C*(lloc(1)+lloc(2));
|
||||
c=lloc(1)*lloc(1)*A+lloc(2)*lloc(2)*B+lloc(1)*lloc(2)*C-1.;
|
||||
templ1=(-b+sqrt(b*b-4.*a*c))/(2.*a);
|
||||
templ2=(-b-sqrt(b*b-4.*a*c))/(2.*a);
|
||||
if abs(templ1)>abs(templ2)
|
||||
newlSet(NBelem(eindex,nindex))=templ1;
|
||||
else
|
||||
newlSet(NBelem(eindex,nindex))=templ2;
|
||||
end
|
||||
nstat(NBelem(eindex,nindex))=1;
|
||||
end
|
||||
end
|
||||
LSetLocal=newlSet;
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Solve Implicit Porblem to Get Temperature
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function Temp=getTemp(Node,Element,numNodes,numElem,LSet,Bound,Temp,Penalty,rho,dtImp,LSetOld)
|
||||
K=zeros(numNodes*2,numNodes*2);
|
||||
M=zeros(numNodes*2,numNodes*2);
|
||||
MStar=zeros(numNodes*2,numNodes*2);
|
||||
pforce=zeros(numNodes*2,1);
|
||||
% Loop Through Elements
|
||||
for e=1:numElem
|
||||
Ke=zeros(8);
|
||||
Me=zeros(8);
|
||||
MeStar=zeros(8);
|
||||
for icrd=1:4;
|
||||
crdnx(icrd)=Node(Element(e,icrd),1);
|
||||
crdny(icrd)=Node(Element(e,icrd),2);
|
||||
theta(icrd)=LSet(Element(e,icrd));
|
||||
thetaO(icrd)=LSetOld(Element(e,icrd));
|
||||
end
|
||||
check=0;
|
||||
for i=1:3
|
||||
for j=i+1:4
|
||||
if sign(theta(1))~=sign(theta(j))
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==1
|
||||
% possible enriched element
|
||||
npart=10;
|
||||
enr=npart*npart;
|
||||
for sdx=1:npart
|
||||
for sdy=1:npart
|
||||
midx=-1.-1./npart+(2./npart)*sdx;
|
||||
midy=-1.-1./npart+(2./npart)*sdy;
|
||||
subindex=npart*(sdy-1)+sdx;
|
||||
gpos=1./(sqrt(3.)*npart);
|
||||
gx(subindex,1)=midx-gpos;
|
||||
gx(subindex,2)=midx+gpos;
|
||||
gx(subindex,3)=midx+gpos;
|
||||
gx(subindex,4)=midx-gpos;
|
||||
hx(subindex,1)=midy-gpos;
|
||||
hx(subindex,2)=midy-gpos;
|
||||
hx(subindex,3)=midy+gpos;
|
||||
hx(subindex,4)=midy+gpos;
|
||||
end
|
||||
end
|
||||
% check if int points are on different sides of front
|
||||
check=0;
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
phiO=phi;
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
if i==1 && j==1
|
||||
sgn=sign(iLS);
|
||||
else
|
||||
if sign(iLS)~=sgn
|
||||
check=1;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
if check==0
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
else
|
||||
% regular element - fix extra dofs
|
||||
enr=1;
|
||||
gpos=1/sqrt(3.);
|
||||
gx(1,1)=-gpos;
|
||||
gx(1,2)=gpos;
|
||||
gx(1,3)=gpos;
|
||||
gx(1,4)=-gpos;
|
||||
hx(1,1)=-gpos;
|
||||
hx(1,2)=-gpos;
|
||||
hx(1,3)=gpos;
|
||||
hx(1,4)=gpos;
|
||||
end
|
||||
for i=1:enr
|
||||
for j=1:4
|
||||
g=gx(i,j);
|
||||
h=hx(i,j);
|
||||
phi(1)=0.25*(1.-g)*(1.-h);
|
||||
phi(3)=0.25*(1.+g)*(1.-h);
|
||||
phi(5)=0.25*(1.+g)*(1.+h);
|
||||
phi(7)=0.25*(1.-g)*(1.+h);
|
||||
phiO=phi;
|
||||
iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7);
|
||||
iLSO=thetaO(1)*phi(1)+thetaO(2)*phi(3)+thetaO(3)*phi(5)+thetaO(4)*phi(7);
|
||||
if iLS<0.
|
||||
cond=0.;
|
||||
spec=0.01;
|
||||
else
|
||||
cond=1.;
|
||||
spec=1.;
|
||||
end
|
||||
if iLSO<0.
|
||||
specO=0.01;
|
||||
else
|
||||
specO=1.;
|
||||
end
|
||||
for iter=1:4
|
||||
phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter)));
|
||||
phiO(2*iter)=phiO(2*iter-1)*(abs(iLSO)-abs(thetaO(iter)));
|
||||
end
|
||||
phig(1)=0.25*-(1.-h);
|
||||
phig(3)=0.25*(1.-h);
|
||||
phig(5)=0.25*(1.+h);
|
||||
phig(7)=0.25*-(1.+h);
|
||||
phih(1)=0.25*-(1.-g);
|
||||
phih(3)=0.25*-(1.+g);
|
||||
phih(5)=0.25*(1.+g);
|
||||
phih(7)=0.25*(1.-g);
|
||||
diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4));
|
||||
diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4));
|
||||
for iter=1:4
|
||||
phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg;
|
||||
phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh;
|
||||
end
|
||||
rjac=zeros(2,2);
|
||||
for iter=1:4
|
||||
rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter);
|
||||
rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter);
|
||||
rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter);
|
||||
rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter);
|
||||
end
|
||||
djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1);
|
||||
rjaci(1,1)= rjac(2,2)/djac;
|
||||
rjaci(2,2)= rjac(1,1)/djac;
|
||||
rjaci(1,2)=-rjac(1,2)/djac;
|
||||
rjaci(2,1)=-rjac(2,1)/djac ;
|
||||
for iter=1:8
|
||||
phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter);
|
||||
phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter);
|
||||
end
|
||||
we=djac;
|
||||
Ke=Ke+(we*cond*(phix'*phix+phiy'*phiy))/double(enr);
|
||||
Me=Me+((we*rho*spec*phi'*phi)/dtImp)/double(enr);
|
||||
MeStar=MeStar+((we*rho*specO*phi'*phiO)/dtImp)/double(enr);
|
||||
end
|
||||
end
|
||||
% Add penalty term and get temp gradient on interface
|
||||
if enr>1;
|
||||
count=0;
|
||||
if sign(theta(1))~=sign(theta(2))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(2)));
|
||||
xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(2)-crdny(1))+crdny(1);
|
||||
gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2));
|
||||
hi(count)=-1.;
|
||||
end
|
||||
if sign(theta(2))~=sign(theta(3))
|
||||
count=count+1;
|
||||
f=abs(theta(2))/(abs(theta(2))+abs(theta(3)));
|
||||
xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2);
|
||||
yi(count)=f*(crdny(3)-crdny(2))+crdny(2);
|
||||
gi(count)=1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3));
|
||||
end
|
||||
if sign(theta(3))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(3))/(abs(theta(3))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3);
|
||||
yi(count)=f*(crdny(4)-crdny(3))+crdny(3);
|
||||
gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3));
|
||||
hi(count)=1.;
|
||||
end
|
||||
if sign(theta(1))~=sign(theta(4))
|
||||
count=count+1;
|
||||
f=abs(theta(1))/(abs(theta(1))+abs(theta(4)));
|
||||
xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1);
|
||||
yi(count)=f*(crdny(4)-crdny(1))+crdny(1);
|
||||
gi(count)=-1.;
|
||||
hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1));
|
||||
end
|
||||
c=zeros(2,1);
|
||||
c=(c+1.);
|
||||
for i=1:2;
|
||||
G(i,1)=0.25*(1.-gi(i))*(1.-hi(i));
|
||||
G(i,3)=0.25*(1.+gi(i))*(1.-hi(i));
|
||||
G(i,5)=0.25*(1.+gi(i))*(1.+hi(i));
|
||||
G(i,7)=0.25*(1.-gi(i))*(1.+hi(i));
|
||||
G(i,2)=-G(i,1)*abs(theta(1));
|
||||
G(i,4)=-G(i,3)*abs(theta(2));
|
||||
G(i,6)=-G(i,5)*abs(theta(3));
|
||||
G(i,8)=-G(i,7)*abs(theta(4));
|
||||
end
|
||||
pen=Penalty*(G'*G);
|
||||
pfL=Penalty*G'*c;
|
||||
% pen=zeros(8);
|
||||
% pfL=zeros(8,1);
|
||||
Ke=Ke+pen;
|
||||
else
|
||||
pen=zeros(8);
|
||||
pfL=zeros(8,1);
|
||||
end
|
||||
% Assemble Global Matrices
|
||||
gnum(1)=2*Element(e,1)-1;
|
||||
gnum(2)=2*Element(e,2)-1;
|
||||
gnum(3)=2*Element(e,3)-1;
|
||||
gnum(4)=2*Element(e,4)-1;
|
||||
for i=1:4;
|
||||
for j=1:4;
|
||||
K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1);
|
||||
K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i);
|
||||
M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1);
|
||||
M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i);
|
||||
MStar(gnum(j),gnum(i))=MStar(gnum(j),gnum(i))+MeStar(2*j-1,2*i-1);
|
||||
MStar(gnum(j)+1,gnum(i)+1)=MStar(gnum(j)+1,gnum(i)+1)+MeStar(2*j,2*i);
|
||||
end
|
||||
end
|
||||
for i=1:4;
|
||||
pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1);
|
||||
pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i);
|
||||
end
|
||||
end
|
||||
%Remove inactive DOFs(Reduce Matrices)
|
||||
RHS=MStar*Temp;
|
||||
A=K+M;
|
||||
Sub=A*Bound;
|
||||
iindex=0;
|
||||
for i=1:2*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
RHSred(iindex)=RHS(i)-Sub(i)+pforce(i);
|
||||
jindex=0;
|
||||
for j=1:2*numNodes;
|
||||
if Bound(j)==0.;
|
||||
jindex=jindex+1;
|
||||
Ared(iindex,jindex)=A(i,j);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
%Solve
|
||||
Tempr=(Ared^-1)*RHSred';
|
||||
iindex=0;
|
||||
for i=1:2*numNodes;
|
||||
if Bound(i)==0.;
|
||||
iindex=iindex+1;
|
||||
Temp(i)=Tempr(iindex);
|
||||
end
|
||||
end
|
||||
Temp
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Generates the initial level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function [LSet]=initialLSet(Node,numNodes)
|
||||
%centx=4.;
|
||||
%centy=4.;
|
||||
%rad=2.1;
|
||||
%for i=1:numNodes;
|
||||
% dist=sqrt((Node(i,1)-centx)*(Node(i,1)-centx)+(Node(i,2)-centy)*(Node(i,2)-centy));
|
||||
% LSet(i)=dist-rad;
|
||||
%end
|
||||
for i=1:numNodes;
|
||||
dist=Node(i,1)-4.6;
|
||||
LSet(i)=dist;
|
||||
end
|
||||
end
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Plot the level set
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
function []=plotLSet(NumX,NumY,delX,delY,LSet)
|
||||
[X Y]=meshgrid(0:delX:delX*NumX,0:delY:delY*NumY);
|
||||
Z=zeros(NumX+1,NumY+1);
|
||||
for i=1:(NumX+1)*(NumY+1)
|
||||
Z(i)=LSet(i);
|
||||
end
|
||||
surf(X,Y,Z)
|
||||
end
|
||||
|
62
Unpublished/XFEM2/Full2D/uelmatinp.inp
Normal file
62
Unpublished/XFEM2/Full2D/uelmatinp.inp
Normal file
|
@ -0,0 +1,62 @@
|
|||
*HEADING
|
||||
Test for passing abaqus material to UELMAT: transient heat transfer
|
||||
*RESTART,WRITE,NUMBER INTERVAL=10
|
||||
*PREPRINT,MODEL=YES
|
||||
*PART,NAME=part1
|
||||
*NODE,NSET=NALL
|
||||
1,0,0,0
|
||||
2,1,0,0
|
||||
3,0,1,0
|
||||
4,1,1,0
|
||||
5,0,2,0
|
||||
6,1,2,0
|
||||
*NSET,NSET=Left
|
||||
1,3,5
|
||||
*NSET,NSET=Right
|
||||
2,4,6
|
||||
*USER ELEMENT, TYPE=U1, NODES=4, COORDINATES=2,
|
||||
INTEGRATION=4,TENSOR=TWOD
|
||||
11,
|
||||
*ELEMENT,TYPE=U1,ELSET=SOLID
|
||||
1, 1,2,4,3
|
||||
2, 3,4,6,5
|
||||
*END PART
|
||||
*ASSEMBLY,NAME=A1
|
||||
*INSTANCE,NAME=I1,PART=PART1
|
||||
*END INSTANCE
|
||||
*Nset, nset=Set-6, instance=I1
|
||||
1,3,5
|
||||
*Nset, nset=Set-7, instance=I1
|
||||
2,4,6
|
||||
*END ASSEMBLY
|
||||
*UEL PROPERTY, ELSET=I1.SOLID, MATERIAL=MAT_THERM
|
||||
**************************************
|
||||
***************************************
|
||||
*MATERIAL,NAME=MAT_THERM
|
||||
*CONDUCTIVITY
|
||||
1.0,
|
||||
*SPECIFIC HEAT
|
||||
1.,
|
||||
*DENSITY
|
||||
1.,
|
||||
*Initial Conditions, type=TEMPERATURE
|
||||
Set-6, 1.,0.
|
||||
*Initial Conditions, type=TEMPERATURE
|
||||
Set-7, 0.,0.
|
||||
*STEP
|
||||
*HEAT TRANSFER, DELTMX=1.
|
||||
0.1,1.0,,0.1
|
||||
**
|
||||
*BOUNDARY
|
||||
Set-6,11,11,1.
|
||||
*OUTPUT,FIELD,freq=1
|
||||
*ELEMENT OUTPUT,ELSET=I1.SOLID
|
||||
HFL,
|
||||
*NODE OUTPUT,NSET=I1.NALL
|
||||
NT,
|
||||
*OUTPUT,HISTORY
|
||||
*ELEMENT OUTPUT,ELSET=I1.SOLID
|
||||
HFL,
|
||||
*NODE OUTPUT,NSET=I1.NALL
|
||||
NT11,
|
||||
*END STEP
|
Loading…
Add table
Add a link
Reference in a new issue