function [] = FESolveX2Db() % MATLAB based 2-D XFEM Solver % J. Grogan (2012) clear all % Define Mesh NumX=4; NumY=1; delX=0.25; delY=0.25; for j=1:NumY+1 for i=1:NumX+1 index=i+(NumX+1)*(j-1); Node(index,1)=single((i-1.))*delX; Node(index,2)=single((j-1.))*delY; end end numNodes=(NumX+1)*(NumY+1); for j=1:NumY for i=1:NumX index=i+NumX*(j-1); Element(index,1)=i+(NumX+1)*(j-1); Element(index,2)=i+(NumX+1)*(j-1)+1; Element(index,3)=i+(NumX+1)*(j)+1; Element(index,4)=i+(NumX+1)*(j); end end numElem=(NumX)*(NumY); % dofs per node ndof=2; % Define Section Properties rho=1.; % initial interface position dpos=0.6; % Initial temperatures Tnew=zeros(numNodes*2,1); Bound=zeros(numNodes*2,1); for e=1:numElem for n=1:4 crdn=Node(Element(e,n),1); if crdn<=dpos Tnew(2*Element(e,n)-1)=1.; end if crdn<0.01 Bound(2*Element(e,n)-1)=1.; end end end % Define Time Step dtime=0.01; tsteps=1; time=0.; % penalty term Penalty=00.; % Loop through time steps for ts=1:tsteps K=zeros(numNodes*ndof,numNodes*ndof); M=zeros(numNodes*ndof,numNodes*ndof); pforce=zeros(numNodes*ndof,1); % Loop Through Elements for e=1:numElem Ke=zeros(4*ndof); Me=zeros(4*ndof); for icrd=1:4; crdnx(icrd)=Node(Element(e,icrd),1); crdny(icrd)=Node(Element(e,icrd),2); theta(icrd)=abs(crdnx(icrd)-dpos)*sign(crdnx(icrd)-dpos); end % if sign(theta(1))~=sign(theta(2)) if 1==2 % enriched element enr=8; % get interface position on element elen=abs(crdnx(2)-crdnx(1)); frac=abs(dpos-crdnx(1))/elen; len1=2.*frac; len2=2.*(1.-frac); % devide element for sub integration mid1=-1+len1/2.; mid2=1-len2/2.; gx(1)=mid1-(len1/2.)/sqrt(3.); gx(2)=mid1+(len1/2.)/sqrt(3.); gx(3)=mid1+(len1/2.)/sqrt(3.); gx(4)=mid1-(len1/2.)/sqrt(3.); gx(5)=mid2-(len2/2.)/sqrt(3.); gx(6)=mid2+(len2/2.)/sqrt(3.); gx(7)=mid2+(len2/2.)/sqrt(3.); gx(8)=mid2-(len2/2.)/sqrt(3.); gpos=1/sqrt(3.); hx(1)=-gpos; hx(2)=-gpos; hx(3)=+gpos; hx(4)=+gpos; hx(5)=-gpos; hx(6)=-gpos; hx(7)=+gpos; hx(8)=+gpos; for iw=1:4 w(iw)=frac/2.; w(iw+4)=(1.-frac)/2.; end else % regular element - fix extra dofs enr=4; gpos=1/sqrt(3.); gx(1)=-gpos; gx(2)=gpos; gx(3)=gpos; gx(4)=-gpos; hx(1)=-gpos; hx(2)=-gpos; hx(3)=gpos; hx(4)=gpos; for iw=1:4 w(iw)=1.; end end % Loop Through Int Points for i=1:enr; g=gx(i); h=hx(i); phi(1)=0.25*(1.-g)*(1.-h); phi(3)=0.25*(1.+g)*(1.-h); phi(5)=0.25*(1.+g)*(1.+h); phi(7)=0.25*(1.-g)*(1.+h); iLS=theta(1)*phi(1)+theta(2)*phi(3)+theta(3)*phi(5)+theta(4)*phi(7); cond=1.; spec=1.; for iter=1:4 phi(2*iter)=phi(2*iter-1)*(abs(iLS)-abs(theta(iter))); end phig(1)=0.25*-(1.-h); phig(3)=0.25*(1.-h); phig(5)=0.25*(1.+h); phig(7)=0.25*-(1.+h); phih(1)=0.25*-(1.-g); phih(3)=0.25*-(1.+g); phih(5)=0.25*(1.+g); phih(7)=0.25*(1.-g); diLSg=sign(iLS)*(phig(1)*theta(1)+phig(3)*theta(2)+phig(5)*theta(3)+phig(7)*theta(4)); diLSh=sign(iLS)*(phih(1)*theta(1)+phih(3)*theta(2)+phih(5)*theta(3)+phih(7)*theta(4)); for iter=1:4 phig(2*iter)=phig(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSg; phih(2*iter)=phih(2*iter-1)*(abs(iLS)-abs(theta(iter)))+phi(2*iter-1)*diLSh; end rjac=zeros(2,2); for iter=1:4 rjac(1,1)=rjac(1,1)+phig(2*iter-1)*crdnx(iter); rjac(1,2)=rjac(1,2)+phig(2*iter-1)*crdny(iter); rjac(2,1)=rjac(2,1)+phih(2*iter-1)*crdnx(iter); rjac(2,2)=rjac(2,2)+phih(2*iter-1)*crdny(iter); end djac=rjac(1,1)*rjac(2,2)-rjac(1,2)*rjac(2,1); rjaci(1,1)= rjac(2,2)/djac; rjaci(2,2)= rjac(1,1)/djac; rjaci(1,2)=-rjac(1,2)/djac; rjaci(2,1)=-rjac(2,1)/djac ; for iter=1:8 phix(iter)=rjaci(1,1)*phig(iter)+rjaci(1,2)*phih(iter); phiy(iter)=rjaci(2,1)*phig(iter)+rjaci(2,2)*phih(iter); end we=w(i)*djac; B=[phix;phiy]; % Ke=Ke+we*cond*(phix'*phix+phiy'*phiy); Ke=Ke+we*cond*(B'*B); Me=Me+(we*rho*spec*phi'*phi)/dtime; end % Add penalty term and get temp gradient on interface if enr==8; count=0; if sign(theta(1))~=sign(theta(2)) count=count+1; f=abs(theta(1))/(abs(theta(1))+abs(theta(2))); xi(count)=f*(crdnx(2)-crdnx(1))+crdnx(1); yi(count)=f*(crdny(2)-crdny(1))+crdny(1); gi(count)=(2.*xi(count)-(crdnx(1)+crdnx(2)))/(-crdnx(1)+crdnx(2)); hi(count)=-1.; end if sign(theta(2))~=sign(theta(3)) count=count+1; f=abs(theta(2))/(abs(theta(2))+abs(theta(3))); xi(count)=f*(crdnx(3)-crdnx(2))+crdnx(2); yi(count)=f*(crdny(3)-crdny(2))+crdny(2); gi(count)=1.; hi(count)=(2.*yi(count)-(crdny(2)+crdny(3)))/(-crdny(2)+crdny(3)); end if sign(theta(3))~=sign(theta(4)) count=count+1; f=abs(theta(3))/(abs(theta(3))+abs(theta(4))); xi(count)=f*(crdnx(4)-crdnx(3))+crdnx(3); yi(count)=f*(crdny(4)-crdny(3))+crdny(3); gi(count)=(2.*xi(count)-(crdnx(4)+crdnx(3)))/(-crdnx(4)+crdnx(3)); hi(count)=1.; end if sign(theta(1))~=sign(theta(4)) count=count+1; f=abs(theta(1))/(abs(theta(1))+abs(theta(4))); xi(count)=f*(crdnx(4)-crdnx(1))+crdnx(1); yi(count)=f*(crdny(4)-crdny(1))+crdny(1); gi(count)=-1.; hi(count)=(2.*yi(count)-(crdny(1)+crdny(4)))/(-crdny(4)+crdny(1)); end c=zeros(2,1); c=(c+1.); for i=1:2; G(i,1)=0.25*(1.-gi(i))*(1.-hi(i)); G(i,3)=0.25*(1.+gi(i))*(1.-hi(i)); G(i,5)=0.25*(1.+gi(i))*(1.+hi(i)); G(i,7)=0.25*(1.-gi(i))*(1.+hi(i)); G(i,2)=-G(i,1)*abs(theta(1)); G(i,4)=-G(i,3)*abs(theta(2)); G(i,6)=-G(i,5)*abs(theta(3)); G(i,8)=-G(i,7)*abs(theta(4)); end pen=Penalty*(G'*G); pfL=Penalty*G'*c; Ke=Ke+pen; else pen=zeros(8); pfL=zeros(8,1); end % Assemble Global Matrices gnum(1)=2*Element(e,1)-1; gnum(2)=2*Element(e,2)-1; gnum(3)=2*Element(e,3)-1; gnum(4)=2*Element(e,4)-1; for i=1:4; for j=1:4; K(gnum(j),gnum(i))=K(gnum(j),gnum(i))+Ke(2*j-1,2*i-1); K(gnum(j)+1,gnum(i))=K(gnum(j)+1,gnum(i))+Ke(2*j,2*i-1); K(gnum(j),gnum(i)+1)=K(gnum(j),gnum(i)+1)+Ke(2*j-1,2*i); K(gnum(j)+1,gnum(i)+1)=K(gnum(j)+1,gnum(i)+1)+Ke(2*j,2*i); M(gnum(j),gnum(i))=M(gnum(j),gnum(i))+Me(2*j-1,2*i-1); M(gnum(j)+1,gnum(i))=M(gnum(j)+1,gnum(i))+Me(2*j,2*i-1); M(gnum(j),gnum(i)+1)=M(gnum(j),gnum(i)+1)+Me(2*j-1,2*i); M(gnum(j)+1,gnum(i)+1)=M(gnum(j)+1,gnum(i)+1)+Me(2*j,2*i); end end for i=1:4; pforce(gnum(i))=pforce(gnum(i))+pfL(2*i-1); pforce(gnum(i)+1)=pforce(gnum(i)+1)+pfL(2*i); end end %Remove inactive DOFs(Reduce Matrices) A=K+M; Sub=A*Bound; RHS=M*Tnew-Sub+pforce; iindex=0; for i=1:ndof*numNodes; if Bound(i)==0.; iindex=iindex+1; RHSR(iindex)=RHS(i); jindex=0; for j=1:ndof*numNodes; if Bound(j)==0.; jindex=jindex+1; AR(iindex,jindex)=A(i,j); end end end end %Solve Tnewr=(AR^-1)*RHSR'; iindex=0; for i=1:ndof*numNodes; if Bound(i)==0.; iindex=iindex+1; Tnew(i)=Tnewr(iindex); end end Tnew end