316 lines
No EOL
8.1 KiB
Fortran
316 lines
No EOL
8.1 KiB
Fortran
c These subroutines control the velocity of exterior nodes in the
|
|
c ALE adaptive mesh domain for 3D uniform corrosion analysis.
|
|
c Author: J. Grogan - BMEC, NUI Galway. Created: 19/09/2012
|
|
c ------------------------------------------------------------------
|
|
c SUB UEXTERNALDB: This is used only at the begining of an analysis.
|
|
c It populates the 'facet' and 'nbr' common block arrays.
|
|
subroutine uexternaldb(lop,lrestart,time,dtime,kstep,kinc)
|
|
include 'aba_param.inc'
|
|
c Common Block Declarations
|
|
parameter (maxNodes=700000,maxFacets=700000)
|
|
integer nbr(maxNodes,5),facet(maxFacets,12)
|
|
real crd(maxNodes,3)
|
|
common nbr,facet,crd
|
|
c Other Declarations
|
|
integer n(8)
|
|
character*256 outdir
|
|
c
|
|
if(lop==0.or.lop==4)then
|
|
call getoutdir(outdir,lenoutdir)
|
|
nbr=0
|
|
open(unit=101,file=outdir(1:lenoutdir)//'\nodedata.inc',
|
|
1 status='old')
|
|
read(101,*)numfaces
|
|
do i=1,4*numfaces,4
|
|
read(101,*)nfix,n(1),n(2),n(3),n(4),n(5),n(6),n(7),n(8)
|
|
c facet(*,12)=fized face flag, facet(*,4-11)=element nodes
|
|
do j=1,4
|
|
ind=i+j-1
|
|
facet(ind,12)=nfix
|
|
do k=1,8
|
|
facet(ind,3+k)=n(k)
|
|
enddo
|
|
enddo
|
|
do j=1,4
|
|
ind=i+j-1
|
|
c facet(*,1-3)=nodes in facet
|
|
read(101,*)facet(ind,1),facet(ind,2),facet(ind,3)
|
|
node=facet(ind,1)
|
|
c nbr(node,1)=counter for facets per node
|
|
if(nbr(node,1)==0)nbr(node,1)=1
|
|
nbr(node,1)=nbr(node,1)+1
|
|
c nbr(node,>1)=facet number
|
|
nbr(node,nbr(node,1))=ind
|
|
enddo
|
|
enddo
|
|
close(unit=101)
|
|
endif
|
|
return
|
|
end
|
|
c ------------------------------------------------------------------
|
|
c SUB UFIELD: This is used at the start of each analysis increment.
|
|
c It populates the 'crd' common block array.
|
|
subroutine ufield(field,kfield,nsecpt,kstep,kinc,time,node,
|
|
1 coords,temp,dtemp,nfield)
|
|
include 'aba_param.inc'
|
|
dimension coords(3)
|
|
c Common Block Declarations
|
|
parameter (maxNodes=700000,maxFacets=700000)
|
|
integer nbr(maxNodes,5),facet(maxFacets,12)
|
|
real crd(maxNodes,3)
|
|
common nbr,facet,crd
|
|
c
|
|
crd(node,1)=coords(1)
|
|
crd(node,2)=coords(2)
|
|
crd(node,3)=coords(3)
|
|
return
|
|
end
|
|
c ------------------------------------------------------------------
|
|
c SUB UMESHMOTION: This is used at the start of each mesh sweep.
|
|
c It calculates the velocity of each node in the local coord system.
|
|
subroutine umeshmotion(uref,ulocal,node,nndof,lnodetype,alocal,
|
|
$ ndim,time,dtime,pnewdt,kstep,kinc,kmeshsweep,jmatyp,jgvblock,
|
|
$ lsmooth)
|
|
include 'aba_param.inc'
|
|
c user defined dimension statements
|
|
dimension ulocal(*),uglobal(ndim),tlocal(ndim)
|
|
dimension alocal(ndim,*),time(2)
|
|
c Common Block Declarations
|
|
parameter (maxNodes=700000,maxFacets=700000)
|
|
integer nbr(maxNodes,5),facet(maxFacets,12)
|
|
real crd(maxNodes,3)
|
|
common nbr,facet,crd
|
|
c Other Declarations
|
|
integer np(3)
|
|
real fp(6,9),fc(6,3),fe(6,3),fn(6,3),a(3),b(3),c(3),d(3),q(3)
|
|
real qnew(3),cp1(3),cp2(3),cp3(3)
|
|
if(lnodetype>=3.and.lnodetype<=5)then
|
|
C PRINT *,NODE,'IN'
|
|
c Analysis Parameters
|
|
velocity=0.01d0
|
|
tol=1.d-5
|
|
c
|
|
numFacets=nbr(node,1)-1
|
|
c get facet point coords (fp).
|
|
do i=1,numFacets
|
|
nFacet=nbr(node,i+1)
|
|
do j=1,3
|
|
nNode=facet(nFacet,j)
|
|
if (j==1)nnode=node
|
|
do k=1,3
|
|
fp(i,3*(j-1)+k)=crd(nNode,k)
|
|
enddo
|
|
c print *,node,nNode
|
|
c print *,crd(nNode,1),crd(nNode,2),crd(nNode,3)
|
|
enddo
|
|
enddo
|
|
c get facet element centroid(fe)
|
|
fe=0.
|
|
do i=1,numFacets
|
|
nFacet=nbr(node,i+1)
|
|
do j=1,8
|
|
nNode=facet(nFacet,j+3)
|
|
do k=1,3
|
|
fe(i,k)=fe(i,k)+crd(nNode,k)/8.
|
|
enddo
|
|
enddo
|
|
enddo
|
|
c get facet centroids (fc)
|
|
do i=1,numFacets
|
|
do j=1,3
|
|
fc(i,j)=(fp(i,j)+fp(i,j+3)+fp(i,j+6))/3.
|
|
enddo
|
|
enddo
|
|
c get facet normals (fn)
|
|
do i=1,numFacets
|
|
do j=1,3
|
|
a(j)=fp(i,j+3)-fp(i,j)
|
|
b(j)=fp(i,j+6)-fp(i,j)
|
|
enddo
|
|
call crossprod(a,b,c)
|
|
rlen=sqrt(c(1)*c(1)+c(2)*c(2)+c(3)*c(3))
|
|
c get inward pointing unit normal
|
|
dp=0.
|
|
do j=1,3
|
|
dp=dp+c(j)*(fe(i,j)-fc(i,j))
|
|
enddo
|
|
rsign=1
|
|
if(dp<0.)rsign=-1
|
|
do j=1,3
|
|
fn(i,j)=rsign*c(j)/rlen
|
|
enddo
|
|
enddo
|
|
c move non-fixed facets along unit normals - update fp
|
|
dist=velocity*dtime
|
|
do i=1,numFacets
|
|
nFacet=nbr(node,i+1)
|
|
if(facet(nFacet,12)/=1)then
|
|
do j=1,3
|
|
fp(i,j)=fp(i,j)+fn(i,j)*dist
|
|
fp(i,j+3)=fp(i,j+3)+fn(i,j)*dist
|
|
fp(i,j+6)=fp(i,j+6)+fn(i,j)*dist
|
|
enddo
|
|
endif
|
|
enddo
|
|
c get old node position (q)
|
|
do i=1,3
|
|
q(i)=crd(node,i)
|
|
enddo
|
|
c determine method to get qnew and relevant planes
|
|
c method depends on # of unique normal directions
|
|
numpairs=0
|
|
if(numfacets==1)then
|
|
method=1
|
|
else
|
|
numdir=0
|
|
do i=1,numfacets-1
|
|
do j=i+1,numfacets
|
|
dp=0.
|
|
do k=1,3
|
|
dp=dp+fn(i,k)*fn(j,k)
|
|
enddo
|
|
if(abs(dp)<1.-tol.or.abs(dp)>1.+tol)then
|
|
np(1)=i
|
|
np(2)=j
|
|
numdir=2
|
|
endif
|
|
if (numdir==2)continue
|
|
enddo
|
|
if(numdir==2)continue
|
|
enddo
|
|
if(numdir==2)then
|
|
method=3
|
|
do i=1,numfacets
|
|
if(i/=np(1).and.i/=np(2))then
|
|
dp1=0.
|
|
dp2=0.
|
|
do j=1,3
|
|
dp1=dp1+fn(np(1),j)*fn(i,j)
|
|
dp2=dp2+fn(np(2),j)*fn(i,j)
|
|
enddo
|
|
if(abs(dp1)<1.-tol.or.abs(dp1)>1.+tol)then
|
|
if(abs(dp2)<1.-tol.or.
|
|
$ abs(dp2)>1.+tol)then
|
|
np(3)=i
|
|
numdir=3
|
|
method=2
|
|
endif
|
|
endif
|
|
endif
|
|
enddo
|
|
else
|
|
method=1
|
|
endif
|
|
endif
|
|
c Get new node position
|
|
if(method==1)then
|
|
c get projection of old point q onto any plane
|
|
c qnew = q - ((q - p1).n)*n
|
|
dp=0.
|
|
do i=1,3
|
|
dp=dp+(q(i)-fp(1,i))*fn(1,i)
|
|
enddo
|
|
do i=1,3
|
|
qnew(i)=q(i)-dp*fn(1,i)
|
|
enddo
|
|
elseif(method==2)then
|
|
c get distances d from each plane to origin
|
|
do i=1,3
|
|
d(i)=0.
|
|
do j=1,3
|
|
d(i)=d(i)-fn(np(i),j)*fp(np(i),j)
|
|
enddo
|
|
enddo
|
|
c get n1 x n2
|
|
do i=1,3
|
|
a(i)=fn(np(1),i)
|
|
b(i)=fn(np(2),i)
|
|
enddo
|
|
call crossprod(a,b,cp1)
|
|
c get n2 x n3
|
|
do i=1,3
|
|
a(i)=fn(np(2),i)
|
|
b(i)=fn(np(3),i)
|
|
enddo
|
|
call crossprod(a,b,cp2)
|
|
c get n3 x n1
|
|
do i=1,3
|
|
a(i)=fn(np(3),i)
|
|
b(i)=fn(np(1),i)
|
|
enddo
|
|
call crossprod(a,b,cp3)
|
|
c get intersection of 3 planes
|
|
c qnew = (-d1(n2 x n3)-d2(n3 x n1)-d3(n1 x n2))/(n1.(n2 x n3))
|
|
denom=fn(np(1),1)*cp2(1)+fn(np(1),2)*cp2(2)
|
|
$ +fn(np(1),3)*cp2(3)
|
|
do i=1,3
|
|
qnew(i)=-(d(1)*cp2(i)+d(2)*cp3(i)+d(3)*cp1(i))
|
|
$ /denom
|
|
enddo
|
|
else
|
|
c find line of intersection of planes given by a point
|
|
c and vector
|
|
do i=1,2
|
|
d(i)=0.
|
|
do j=1,3
|
|
d(i)=d(i)-fn(np(i),j)*fp(np(i),j)
|
|
enddo
|
|
enddo
|
|
c get n1 x n2
|
|
do i=1,3
|
|
a(i)=fn(np(1),i)
|
|
b(i)=fn(np(2),i)
|
|
enddo
|
|
call crossprod(a,b,cp1)
|
|
rlen=sqrt(cp1(1)*cp1(1)+cp1(2)*cp1(2)+cp1(3)*cp1(3))
|
|
do i=1,3
|
|
a(i)=d(2)*fn(np(1),i)-d(1)*fn(np(2),i)
|
|
enddo
|
|
c get (d2n1 - d1n2) x (n1 x n2)
|
|
call crossprod(a,cp1,cp2)
|
|
c a = unit vector along line
|
|
c b = point on line
|
|
do i=1,3
|
|
a(i)=cp1(i)/rlen
|
|
b(i)=cp2(i)/(rlen*rlen)
|
|
enddo
|
|
c get projection of node onto line
|
|
c bq'=((bq).a)*a
|
|
dp=0.
|
|
do i=1,3
|
|
dp=dp+(q(i)-b(i))*a(i)
|
|
enddo
|
|
do i=1,3
|
|
qnew(i)=b(i)+dp*a(i)
|
|
enddo
|
|
endif
|
|
do i=1,3
|
|
a(i)=(qnew(i)-q(i))/dtime
|
|
enddo
|
|
c print *,node,a(1),a(2),a(3)
|
|
do i=1,3
|
|
uglobal(i) = a(i)
|
|
enddo
|
|
do i=1,ndim
|
|
tlocal(i)=0.
|
|
do j=1,ndim
|
|
tlocal(i)=tlocal(i)+uglobal(j)*alocal(j,i)
|
|
enddo
|
|
enddo
|
|
do i=1,ndim
|
|
ulocal(i)=tlocal(i)
|
|
enddo
|
|
endif
|
|
lsmooth=1
|
|
return
|
|
end
|
|
c Return cross product(c) for input vectors (a, b)
|
|
subroutine crossprod(a,b,c)
|
|
include 'aba_param.inc'
|
|
real a(3),b(3),c(3)
|
|
c(1)=a(2)*b(3)-a(3)*b(2)
|
|
c(2)=a(3)*b(1)-a(1)*b(3)
|
|
c(3)=a(1)*b(2)-a(2)*b(1)
|
|
return
|
|
end
|
|
|