174 lines
4.5 KiB
Text
174 lines
4.5 KiB
Text
function [] = FESolveSimp()
|
|
% MATLAB based 1-D XFEM Solver
|
|
% J. Grogan (2012)
|
|
clear all
|
|
% Define Geometry
|
|
len=1.;
|
|
% Define Section Properties
|
|
rho=1.;
|
|
% Generate Mesh
|
|
numElem=10;
|
|
charlen=len/numElem;
|
|
ndCoords=linspace(0,len,numElem+1);
|
|
numNodes=size(ndCoords,2);
|
|
indx=1:numElem;
|
|
elemNodes(:,1)=indx;
|
|
elemNodes(:,2)=indx+1;
|
|
% dofs per node
|
|
ndof=1;
|
|
% Initial temperatures
|
|
Tnew=zeros(numNodes,1);
|
|
Bound=zeros(numNodes,1);
|
|
Tnew(1)=1.;
|
|
Bound(1)=1.;
|
|
% Define Time Step
|
|
dtime=0.0001;
|
|
tsteps=100;
|
|
time=0.;
|
|
% Loop through time steps
|
|
for ts=1:tsteps
|
|
K=zeros(numNodes,numNodes);
|
|
M=zeros(numNodes,numNodes);
|
|
% Loop Through Elements
|
|
for e=1:numElem
|
|
Ke=zeros(2*ndof);
|
|
Me=zeros(2*ndof);
|
|
crdn1=ndCoords(elemNodes(e,1));
|
|
crdn2=ndCoords(elemNodes(e,2));
|
|
elen=abs(crdn2-crdn1);
|
|
ajacob=elen/2.;
|
|
gpx(1)=-1/sqrt(3.);
|
|
gpx(2)=1/sqrt(3.);
|
|
w(1)=1.;
|
|
w(2)=1.;
|
|
% Loop Through Int Points
|
|
for i=1:2;
|
|
c=gpx(i);
|
|
phi(1)=(1.-c)/2.;
|
|
phi(2)=(1.+c)/2.;
|
|
cond=1.;
|
|
spec=1.;
|
|
phic(1)=-0.5;
|
|
phic(2)=0.5;
|
|
phix(1)=phic(1)/ajacob;
|
|
phix(2)=phic(2)/ajacob;
|
|
we=ajacob*w(i);
|
|
Ke=Ke+we*cond*phix'*phix;
|
|
Me=Me+(we*rho*spec*phi'*phi)/dtime;
|
|
end
|
|
if enr==5;
|
|
Ke(1,2)=0.;
|
|
Me(1,2)=0.;
|
|
Ke(2,1)=0.;
|
|
Me(2,1)=0.;
|
|
Ke(1,4)=0.;
|
|
Me(1,4)=0.;
|
|
Ke(4,1)=0.;
|
|
Me(4,1)=0.;
|
|
Ke(3,2)=0.;
|
|
Me(3,2)=0.;
|
|
Ke(2,3)=0.;
|
|
Me(2,3)=0.;
|
|
Ke(4,3)=0.;
|
|
Me(4,3)=0.;
|
|
Ke(3,4)=0.;
|
|
Me(3,4)=0.;
|
|
end
|
|
% Add penalty term and get temp gradient on interface
|
|
if enr==4;
|
|
xi=point;
|
|
gm(1)=(1.-xi)/2.;
|
|
gm(3)=(1.+xi)/2.;
|
|
term=theta(1)*gm(1)+theta(2)*gm(3);
|
|
gm(2)=gm(1)*(abs(term)-abs(theta(1)));
|
|
gm(4)=gm(3)*(abs(term)-abs(theta(2)));
|
|
pen=beta*(gm'*gm);
|
|
pfL=beta*1*gm';
|
|
Ke=Ke+pen;
|
|
else
|
|
pen=zeros(4);
|
|
pfL=zeros(4,1);
|
|
end
|
|
% Assemble Global Matrices
|
|
gnum=2.*elemNodes(e,1)-1.;
|
|
for i=1:4;
|
|
for j=1:4;
|
|
K(gnum+j-1,gnum+i-1)=K(gnum+j-1,gnum+i-1)+Ke(j,i);
|
|
M(gnum+j-1,gnum+i-1)=M(gnum+j-1,gnum+i-1)+Me(j,i);
|
|
end
|
|
pforce(gnum+i-1)=pforce(gnum+i-1)+pfL(i);
|
|
end
|
|
end
|
|
%Remove NON-ENHANCED DOFs(Reduce Matrices)
|
|
iindex=0.;
|
|
for i=1:ndof*numNodes;
|
|
check=0;
|
|
if mod(i,2)==0 && eNodes(i)~=1
|
|
check=1;
|
|
end
|
|
if check==0
|
|
iindex=iindex+1;
|
|
TR1(iindex)=Tnew(i);
|
|
BR1(iindex)=Bound(i);
|
|
pforceR1(iindex)=pforce(i);
|
|
jindex=0;
|
|
for j=1:ndof*numNodes;
|
|
check=0;
|
|
if mod(j,2)==0 && eNodes(j)~=1
|
|
check=1;
|
|
end
|
|
if check==0
|
|
jindex=jindex+1;
|
|
MR1(iindex,jindex)=M(i,j);
|
|
KR1(iindex,jindex)=K(i,j);
|
|
end
|
|
end
|
|
end
|
|
end
|
|
AR1=KR1+MR1
|
|
SubR1=AR1*BR1'
|
|
MR1
|
|
TR1'
|
|
MR1*TR1'
|
|
pforceR1'
|
|
RHSR1=MR1*TR1'-SubR1+pforceR1'
|
|
% Apply Boundary Conditions
|
|
Biindex=0.;
|
|
for i=1:iindex;
|
|
if BR1(i)==0.;
|
|
Biindex=Biindex+1;
|
|
RHSR2(Biindex)=RHSR1(i);
|
|
jindex=0;
|
|
for j=1:iindex;
|
|
check=0;
|
|
if BR1(j)==0.;
|
|
jindex=jindex+1;
|
|
AR2(Biindex,jindex)=AR1(i,j);
|
|
end
|
|
end
|
|
end
|
|
end
|
|
%Solve
|
|
Tnewr=(AR2^-1)*RHSR2'
|
|
% Restore Matrices
|
|
Biindex=0;
|
|
for i=1:iindex;
|
|
if BR1(i)==0.;
|
|
Biindex=Biindex+1;
|
|
TR1(i)=Tnewr(Biindex);
|
|
end
|
|
end
|
|
iindex=0;
|
|
for i=1:ndof*numNodes;
|
|
check=0;
|
|
if mod(i,2)==0 && eNodes(i)~=1
|
|
check=1;
|
|
end
|
|
if check==0
|
|
iindex=iindex+1;
|
|
Tnew(i)=TR1(iindex);
|
|
end
|
|
end
|
|
Tnew
|
|
end
|
|
stored'
|